×

Nonaxisymmetric vibrations of radially polarized hollow cylinders made of functionally gradient piezoelectric materials. (English) Zbl 1258.74073

Summary: The nonaxisymmetric problem of natural vibrations of radially polarized hollow cylinders made of functionally gradient piezoelectric materials is solved. The properties of the material change continuously along a radial coordinate according to an exponential law. The lateral surfaces of the cylinder are free of external tractions and short circuited by electrodes. After separation of variables and representation of the components of the displacement vector in the form of standing circumferential waves, the initially three-dimensional problem is reduced to a two-dimensional partial differential equation problem. By using the method of spline-collocations with respect to a longitudinal coordinate, this two-dimensional problem is reduced to a boundary-value problem for the eigenvalues expressed in terms of ordinary differential equations. This problem is solved by the stable discrete-orthogonalization technique in combination with a step-by-step search method with respect to the radial coordinate. Results were obtained numerically and subsequently analyzed in this paper.

MSC:

74F15 Electromagnetic effects in solid mechanics
Full Text: DOI

References:

[1] Baily T., Hubbard E.: Distributed piezoelectric polymer active vibration control of cantiliver beam. J. Guid. Control Dyn. 8(5), 605–611 (1985) · Zbl 0633.93047 · doi:10.2514/3.20029
[2] Baz A., Poh S.: Performance on an active control system with piezoelectric actuators. J. Sound. Vib. 126(2), 327–343 (1988) · doi:10.1016/0022-460X(88)90245-3
[3] Berlincourt, D.: Piezoelectric crystals and ceramics. In: Mattiat, O.E. (ed.) Ultrasonic Transducer Materials, chap. 2, pp. 62–124. Plenum Press, New York (1971)
[4] Birman V., Byrd L.W.: Modeling and analysis of functionally graded materials and structures. ASME Appl. Mech. Rev. 60, 195–216 (2007) · doi:10.1115/1.2777164
[5] Chen W.Q., Ding H.J.: On free vibrations of a functionally graded piezoelectric rectangular plate. Acta Mech. 153, 207–216 (2002) · Zbl 1008.74038 · doi:10.1007/BF01177452
[6] Chen W.Q., Lu Y., Ye J.R., Cai J.B.: 3D electroelastic fields in a functionally graded piezoceramic hollow sphere under mechanical and electric loading. Arch. Appl. Mech. 72, 39–51 (2002) · Zbl 1017.74019 · doi:10.1007/s004190100184
[7] Crawly E.F., de Luis J.: Use of piezoelectric actuators as elements of intelligent structures. AIAA J. 25(10), 1373–1385 (1987) · doi:10.2514/3.9792
[8] Dai H.L., Wang X.: Transient wave propagation in piezoelectric hollow spheres subjected to thermal shock and electric excitation. Struct. Eng. Mech. 19(4), 441–457 (2005) · doi:10.12989/sem.2005.19.4.441
[9] Dai H.L., Fu Y.M., Yang J.H.: Electromagnetoelastic behaviors of functionally graded piezoelectric solid cylinder and sphere. Acta Mech. Sin. 23, 55–63 (2007) · Zbl 1202.74054 · doi:10.1007/s10409-006-0047-0
[10] Dai H.L., Hong L., Fu M.Y., Xiao X.: Analytical solution for electromagnetothermoelastic behaviors of functionally graded piezoelectric hollow cylinder. Appl. Math. Model. 34, 343–357 (2010) · Zbl 1185.74016 · doi:10.1016/j.apm.2009.04.008
[11] Ghorbanpour A.A., Salari M., Khademizadeh H., Arefmanesh A.: Magnetothermo-elastic stress and perturbation of magnetic field vector in a functionally graded hollow sphere. Arch. Appl. Mech. 80, 189–200 (2010) · Zbl 1184.74021 · doi:10.1007/s00419-009-0312-3
[12] Grigorenko, Y.M., Grigorenko, A.Y., Vlaikov, G.G.: Problems of Mechanics for Anisotropic Inhomogeneous Shells on Basic of Different Models. Monograph, Kiev, Akademperiodika (2009a) · Zbl 1081.74011
[13] Grigorenko A.Y., Efimova T.L, Loza I.A.: An approach to the investigation of vibrations of hollow piezoceramic cylinders of finite length [in Russian]. Rep. NASU 25(6), 61–67 (2009b) · Zbl 1187.74064
[14] Grigorenko A.Y., Efimova T.L, Loza I.A.: Free vibrations of axially polarized piezoceramic hollow cylinders of finite length. Int. Appl. Mech. 46(6), 625–633 (2010) · Zbl 1288.74043 · doi:10.1007/s10778-010-0350-0
[15] Grigorenko A., Müller W.H., Wille R., Yaremchenko S.: Numerical solution of stress-strain state in hollow cylinder by means of spline approximation. J. Math. Sci. 180(2), 135–145 (2012) · Zbl 1230.74102 · doi:10.1007/s10958-011-0635-9
[16] Heyliger P.R.: A note on the static behavior of simply-supported laminated piezoelectric cylinder. Int. J. Solids Struct. 34(29), 3781–3794 (1997) · Zbl 0942.74559 · doi:10.1016/S0020-7683(97)00009-7
[17] Loza I.A.: Propagation of nonaxisymmetric waves in hollow piezoceramic cylinder with radial polarization. Sov. Appl. Mech. 21(1), 22–27 (1985) · Zbl 0586.73177
[18] Saravanos D.A., Heyliger P.R.: Mechanics and computational models for laminated piezoelectric beams, plates, and shells. ASME Appl. Mech. Rev. 52, 305–320 (1999) · doi:10.1115/1.3098918
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.