×

Dynamic stress response analysis of inhomogeneous medium containing inhomogeneous inclusions under action of SH waves. (English) Zbl 1533.74048

Summary: This paper proposes an analytical method for studying the propagation of elastic waves in shear modulus- and density-inhomogeneous substrates containing shear modulus- and density-inhomogeneous inclusions based on theories and methods regarding elastic wave propagation in a homogeneous medium. This method provides research ideas and theoretical references to analyze the dynamic stress concentration and interface displacement problems in functionally graded material (FGM) composites. Taking an inhomogeneous substrate, with power-law variations in both shear modulus and density, containing inhomogeneous circular inclusions under the action of SH waves as an example, the dynamic stress responses caused by the circular inclusions, whose shear modulus and density vary with exponential gradients, are analyzed. The effects of the reference wavenumber in the substrate, the inclusion-to-substrate wavenumber ratio, and the inhomogeneous variations of the substrate and inclusions on the peripheral dynamic stress concentration factor distribution of the inclusions are analyzed using calculation examples. The results suggest that circular inclusion-induced dynamic stress concentration is sensitive to changes in substrate heterogeneity. When the inhomogeneous parameter of the substrate increases, the dynamic stress concentration around a circular inclusion increases sharply. Finally, the dynamic stress concentration can be somewhat reduced by regulating the inclusion heterogeneity.

MSC:

74J20 Wave scattering in solid mechanics
74E05 Inhomogeneity in solid mechanics
74H35 Singularities, blow-up, stress concentrations for dynamical problems in solid mechanics
Full Text: DOI

References:

[1] Gibson, RF, A review of recent research on mechanics of multifunctional composite materials and structures—ScienceDirect, Compos Struct, 92, 12, 2793-2810 (2010) · doi:10.1016/j.compstruct.2010.05.003
[2] Sih, GC; Song, ZF, Magnetic and electric poling effects associated with crack growth in BaTiO_3-CoFe_2O_4 composite, Theor Appl Fract Mech, 39, 3, 209-227 (2003) · doi:10.1016/S0167-8442(03)00003-X
[3] Gao, CF; Tong, P.; Zhang, TY, Interfacial crack problems in magneto-electroelastic solids, Int J Eng Sci, 41, 18, 2105-2121 (2003) · doi:10.1016/S0020-7225(03)00206-4
[4] Gao, CF; Kessler, H.; Balke, H., Fracture analysis of electro magnetic thermoelastic solids, Eur J Mech A/Solid, 22, 3, 433-442 (2003) · Zbl 1032.74633 · doi:10.1016/S0997-7538(03)00047-0
[5] Zhou, ZG; Wang, B.; Sun, YG, Two collinear interface cracks in magneto-electro-elastic composites, Int J Eng Sci, 42, 11-12, 1155-1167 (2004) · Zbl 1211.76107 · doi:10.1016/j.ijengsci.2004.01.005
[6] Sun, JI; Zhou, ZG; Wang, B., A permeable crack in functionally graded piezoelectric /piezomagnetic materials, Acta Mech Sin, 37, 1, 9-14 (2005)
[7] Petrov, VM; Srinivasan, G., Enhancement of magnetoelectric coupling in functionally graded ferroelectric and ferromagnetic bilayers, Phys Rev B, 78, 18, 2599-2604 (2008) · doi:10.1103/PhysRevB.78.184421
[8] Kong, Y.; Liu, J.; Nie, G., Propagation characteristics of SH waves in a functionally graded piezomagnetic layer on PMN-0.29PT single crystal substrate, Mech Res Commun, 73, 107 (2016) · doi:10.1016/j.mechrescom.2016.02.012
[9] Du, JK; Xian, K.; Yong, YK; Wang, J., SH-SAW propagation in layered functionally graded piezoelectric material structures loaded with viscous liquid, Acta Mech, 212, 3-4, 271-281 (2010) · Zbl 1397.74105 · doi:10.1007/s00707-009-0258-0
[10] Cao, X.; Shi, J.; Jin, F., Lamb wave propagation in the functionally graded piezoelectric-piezomagnetic material plate, Acta Mech, 223, 5, 1081-1091 (2012) · Zbl 1401.74148 · doi:10.1007/s00707-012-0612-5
[11] Singh, BM; Rokne, J., Propagation of SH waves in layered functionally gradient piezoelectric-piezomagnetic structures, Philos Mag, 93, 14, 1690-1700 (2013) · doi:10.1080/14786435.2012.753483
[12] Baroi, J.; Sahu, SA; Nirwal, S., Anti-plane shear wave motion in a composite layered structure with slit, Waves Random Complex Media (2021) · doi:10.1080/17455030.2021.1944701
[13] Baroi J, Sahu SA (2020) Dynamics of Bleustein-Gulyaev (BG) waves in smart composite structure. In: Mathematical modeling and computational tools: ICACM 2018, Kharagpur, India, November 23-25. Springer Singapore, pp 331-343
[14] Sahu, SA; Baroi, J.; Chattopadhyay, A.; Nirwal, S., Characterization of polarized shear waves in FGPM composite structure with imperfect boundary: WKB method, Int J Appl Mech, 11, 9, 1950083 (2020) · doi:10.1142/S1758825119500832
[15] Baroi J, Sahu SA (2021) Love-type wave propagation in functionally graded piezomagnetic material resting on piezoelectric half-space. In: Advances in structural vibration: select proceedings of ICOVP 2017. Springer, Singapore, pp 495-508
[16] Dorduncu, M.; Apalak, MK; Cherukuri, HP, Elastic wave propagation in functionally graded circular cylinders, Composites B, 73, 35-48 (2015) · doi:10.1016/j.compositesb.2014.12.021
[17] Grigorenko, AY; Müller, WH; Wille, R.; Loza, IA, Nonaxisymmetric vibrations of radially polarized hollow cylinders made of functionally gradient piezoelectric materials, Continuum Mech Thermodyn, 24, 515-524 (2012) · Zbl 1258.74073 · doi:10.1007/s00161-012-0239-8
[18] Grigorenko, AY; Müller, WH; Wille, R.; Loza, IA, Nonaxisymmetric electroelastic vibrations of a hollow sphere made of functionally gradient piezoelectric material, Continuum Mech Thermodyn, 26, 771-781 (2014) · Zbl 1341.74060 · doi:10.1007/s00161-014-0337-x
[19] Wu, B.; Su, YP; Liu, DY; Chen, WQ, On propagation of axisymmetric waves in pressurized functionally graded elastomeric hollow cylinders, J Sound Vib, 421, 17-47 (2018) · doi:10.1016/j.jsv.2018.01.055
[20] Kanaun, S.; Levin, V., Scattering of elastic waves on a heterogeneous inclusion of arbitrary shape: an efficient numerical method for 3D-problems, Wave Motion, 50, 4, 687-707 (2013) · Zbl 1454.35245 · doi:10.1016/j.wavemoti.2013.01.002
[21] Oberguggenberger, M.; Schwarz, M., Wave propagation in random media, parameter estimation and damage detection via stochastic Fourier integral operators, J Sound Vib, 513, 116409 (2021) · doi:10.1016/j.jsv.2021.116409
[22] Martin, PA, Scattering by a cavity in an exponentially graded half-space, J Appl Mech, 76, 3, 031009 (2009) · doi:10.1115/1.3086585
[23] Zhang, N.; Wei, YC; Pan, JS; Yang, J.; Zhang, Y.; Dai, DH, Wave propagation and scattering around a radially inhomogeneous cylindrical inclusion in a full space, Sustainability, 14, 22, 14969 (2022) · doi:10.3390/su142214969
[24] Golubev, VI; Nikitin, IS; Vasyukov, AV; Nikitin, AD, Fractured inclusion localization and characterization based on deep convolutional neural networks, Procedia Struct Integr, 43, 29-34 (2023) · doi:10.1016/j.prostr.2022.12.230
[25] Delfani, MR; Tarvirdilu-Asl, A.; Sajedipour, M., Elastic fields due to a suddenly expanding spherical inclusion within Mindlin’s first strain-gradient theory, Continuum Mech Thermodyn, 34, 3, 697-719 (2022) · doi:10.1007/s00161-022-01084-w
[26] Liu, DK; Gai, BZ; Tao, GY, Applications of the method of complex functions to dynamic stress concentrations, Wave Mot, 4, 293-304 (1982) · Zbl 0484.73007 · doi:10.1016/0165-2125(82)90025-7
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.