×

The homological projective dual of \(\operatorname{Sym}^2\mathbb{P}(V)\). (English) Zbl 1453.14053

Summary: We study the derived category of a complete intersection \(X\) of bilinear divisors in the orbifold \(\operatorname{Sym}^2\mathbb{P}(V)\). Our results are in the spirit of Kuznetsov’s theory of homological projective duality, and we describe a homological projective duality relation between \(\operatorname{Sym}^2\mathbb{P}(V)\) and a category of modules over a sheaf of Clifford algebras on \(\mathbb{P}(\operatorname{Sym}^2V^{\vee })\). The proof follows a recently developed strategy combining variation of geometric invariant theory (VGIT) stability and categories of global matrix factorisations. We begin by translating \(D^b(X)\) into a derived category of factorisations on a Landau-Ginzburg (LG) model, and then apply VGIT to obtain a birational LG model. Finally, we interpret the derived factorisation category of the new LG model as a Clifford module category. In some cases we can compute this Clifford module category as the derived category of a variety. As a corollary we get a new proof of a result of Hosono and Takagi, which says that a certain pair of non-birational Calabi-Yau 3-folds have equivalent derived categories.

MSC:

14F08 Derived categories of sheaves, dg categories, and related constructions in algebraic geometry
14J33 Mirror symmetry (algebro-geometric aspects)
16E35 Derived categories and associative algebras
53D37 Symplectic aspects of mirror symmetry, homological mirror symmetry, and Fukaya category
18G80 Derived categories, triangulated categories

Software:

Macaulay2

References:

[1] Addington, N., Spinor sheaves and complete intersections of quadrics, PhD thesis, University of Wisconsin-Madison (2009).
[2] Addington, N., Donovan, W. and Segal, E., The Pfaffian-Grassmannian equivalence revisited, Algebr. Geom.2 (2015), 332-364. · Zbl 1322.14037
[3] Addington, N. M., Segal, E. P. and Sharpe, E. R., D-brane probes, branched double covers, and noncommutative resolutions, Adv. Theor. Math. Phys.18 (2014), 1369-1436. · Zbl 1311.81202
[4] Ballard, M., Deliu, D., Favero, D., Isik, M. U. and Katzarkov, L., Resolutions in factorization categories, Adv. Math.295 (2016), 195-249. · Zbl 1353.13016
[5] Ballard, M., Deliu, D., Favero, D., Isik, M. U. and Katzarkov, L., Homological projective duality via variation of geometric invariant theory quotients, J. Eur. Math. Soc. (JEMS)19 (2017), 1127-1158. · Zbl 1400.14048
[6] Ballard, M., Deliu, D., Favero, D., Isik, M. U. and Katzarkov, L., On the derived categories of degree d hypersurface fibrations, Math. Ann.371 (2018), 337-370. · Zbl 1423.14114
[7] Ballard, M., Favero, D. and Katzarkov, L., A category of kernels for equivariant factorizations and its implications for Hodge theory, Publ. Math. Inst. Hautes Études Sci.120 (2014), 1-111. · Zbl 1401.14086
[8] Ballard, M., Favero, D. and Katzarkov, L., Variation of geometric invariant theory quotients and derived categories, J. Reine Angew. Math.746 (2019), 235-303. · Zbl 1432.14015
[9] Bernstein, J. and Lunts, V., Equivariant sheaves and functors, (Springer, Berlin, 1994). · Zbl 0808.14038
[10] Bondal, A. and Orlov, D., Semiorthogonal decomposition for algebraic varieties, Preprint (1995), arXiv:alg-geom/9506012v1.
[11] Bondal, A. I., Representations of associative algebras and coherent sheaves, Izv. Akad. Nauk SSSR Ser. Mat.53 (1989), 25-44.
[12] Borisov, L. and Căldăraru, A., The Pfaffian-Grassmannian derived equivalence, J. Algebraic Geom.18 (2009), 201-222. · Zbl 1181.14020
[13] Dyckerhoff, T., Compact generators in categories of matrix factorizations, Duke Math. J.159 (2011), 223-274. · Zbl 1252.18026
[14] Efimov, A. I. and Positselski, L., Coherent analogues of matrix factorizations and relative singularity categories, Algebra Number Theory9 (2015), 1159-1292. · Zbl 1333.14018
[15] Favero, D. and Kelly, T. L., Proof of a conjecture of Batyrev and Nill, Amer. J. Math.139 (2017), 1493-1520. · Zbl 1390.14124
[16] Grayson, D. R. and Stillman, M. E., Macaulay2, a software system for research in algebraic geometry. Available at http://www.math.uiuc.edu/Macaulay2/.
[17] Halpern-Leistner, D., The derived category of a GIT quotient, J. Amer. Math. Soc.28 (2015), 871-912. · Zbl 1354.14029
[18] Herbst, M., Hori, K. and Page, D., Phases of \(N=2\) theories in \(1+1\) dimensions with boundary, Preprint (2008), arXiv:0803.2045v1 [hep-th].
[19] Hori, K., Duality in two-dimensional (2, 2) supersymmetric non-abelian gauge theories, J. High Energy Phys.2013(10) (2013), 121. · Zbl 1342.81635
[20] Hori, K. and Knapp, J., Linear sigma models with strongly coupled phases – one parameter models, J. High Energy Phys.2013(11) (2013), 70.
[21] Hosono, S. and Takagi, H., Double quintic symmetroids, Reye congruences, and their derived equivalence, J. Differential Geom.104 (2016), 443-497. · Zbl 1364.32018
[22] Ingalls, C. and Kuznetsov, A., On nodal Enriques surfaces and quartic double solids, Math. Ann.361 (2015), 107-133. · Zbl 1408.14069
[23] Isik, M. U., Equivalence of the derived category of a variety with a singularity category, Int. Math. Res. Not. IMRN2013 (2013), 2787-2808. · Zbl 1312.14052
[24] Kuznetsov, A., Homological projective duality for Grassmannians of lines, Preprint (2006),arXiv:math/0610957v1.
[25] Kuznetsov, A., Homological projective duality, Publ. Math. Inst. Hautes Études Sci.105 (2007), 157-220. · Zbl 1131.14017
[26] Kuznetsov, A., Derived categories of quadric fibrations and intersections of quadrics, Adv. Math.218 (2008), 1340-1369. · Zbl 1168.14012
[27] Laumon, G. and Moret-Bailly, L., Champs algébriques, (Springer, Berlin, 2000). · Zbl 0945.14005
[28] Mac Lane, S., Categories for the working mathematician, , second edition (Springer, New York, 1998). · Zbl 0906.18001
[29] Masuda, M., Moser-Jauslin, L. and Petrie, T., The equivariant Serre problem for abelian groups, Topology35 (1996), 329-334. · Zbl 0884.14007
[30] Mirković, I. and Riche, S., Linear Koszul duality, Compos. Math.146 (2010), 233-258. · Zbl 1275.14014
[31] Orlov, D., Matrix factorizations for nonaffine LG-models, Math. Ann.353 (2012), 95-108. · Zbl 1243.81178
[32] Positselski, L., Two kinds of derived categories, Koszul duality, and comodule-contramodule correspondence, Mem. Amer. Math. Soc.212 (2011). · Zbl 1275.18002
[33] Rennemo, J. V., The fundamental theorem of homological projective duality via variation of GIT stability, Preprint (2017), arXiv:1705.01437 [math].
[34] Riche, S., Koszul duality and modular representations of semisimple Lie algebras, Duke Math. J.154 (2010), 31-134. · Zbl 1264.17005
[35] Segal, E., Equivalence between GIT quotients of Landau-Ginzburg B-models, Comm. Math. Phys.304 (2011), 411-432. · Zbl 1216.81122
[36] Grothendieck, A., Cohomologie locale des faisceaux cohérents et théorèmes de Lefschetz locaux et globaux (SGA 2), (Société Mathématique de France, Paris, 2005). · Zbl 1079.14001
[37] M., Artin, Grothendieck, A. and Verdier, J.-L., Séminaire de Géométrie Algébrique du Bois-Marie 1963-1964 - Théorie des topos et cohomologie étale des schémas (SGA 4), tome 3, (Springer, Berlin, 1972). · Zbl 0234.00007
[38] Shipman, I., A geometric approach to Orlov’s theorem, Compos. Math.148 (2012), 1365-1389. · Zbl 1253.14019
[39] Spaltenstein, N., Resolutions of unbounded complexes, Compos. Math.65 (1988), 121-154. · Zbl 0636.18006
[40] Segal, E. and Thomas, R. P., Quintic threefolds and Fano elevenfolds, J. Reine Angew. Math.743 (2018), 245-259. · Zbl 1454.14051
[41] , Stacks Project. https://stacks.math.columbia.edu(2019).
[42] Thomason, R. W., Equivariant resolution, linearization, and Hilbert’s fourteenth problem over arbitrary base schemes, Adv. Math.65 (1987), 16-34. · Zbl 0624.14025
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.