×

Mirror symmetry for quasi-smooth Calabi-Yau hypersurfaces in weighted projective spaces. (English) Zbl 1460.14087

Summary: We consider a \(d\)-dimensional well-formed weighted projective space \(\mathbb{P}(\overline{w})\) as a toric variety associated with a fan \(\varSigma(\overline{w})\) in \(N_{\overline{w}}\otimes\mathbb{R}\) whose 1-dimensional cones are spanned by primitive vectors \(v_0,v_1,\ldots,v_d\in N_{\overline{w}}\) generating a lattice \(N_{\overline{w}}\) and satisfying the linear relation \(\sum_iw_iv_i=0\). For any fixed dimension \(d\), there exist only finitely many weight vectors \(\overline{w}=(w_0,\ldots,w_d)\) such that \(\mathbb{P}(\overline{w})\) contains a quasi-smooth Calabi-Yau hypersurface \(X_w\) defined by a transverse weighted homogeneous polynomial \(W\) of degree \(w=\sum_{i=0}^dw_i\). Using a formula of Vafa for the orbifold Euler number \(\chi_{\mathrm{orb}}(X_w)\), we show that for any quasi-smooth Calabi-Yau hypersurface \(X_w\) the number \((-1)^{d-1}\chi_{\mathrm{orb}}(X_w)\) equals the stringy Euler number \(\chi_{\mathrm{str}}(X_{\overline{w}}^\ast)\) of Calabi-Yau compactifications \(X_{\overline{w}}^\ast\) of affine toric hypersurfaces \(Z_{\overline{w}}\) defined by non-degenerate Laurent polynomials \(f_{\overline{w}}\in\mathbb{C}[N_{\overline{w}}]\) with Newton polytope \(\mathrm{conv}(\{v_0,\ldots,v_d\})\). In the moduli space of Laurent polynomials \(f_{\overline{w}}\) there always exists a special point \(f_{\overline{w}}^0\) defining a mirror \(X_{\overline{w}}^\ast\) with a \(\mathbb{Z}/ w\mathbb{Z}\)-symmetry group such that \(X_{\overline{w}}^\ast\) is birational to a quotient of a Fermat hypersurface via a Shioda map.

MSC:

14J33 Mirror symmetry (algebro-geometric aspects)
14J32 Calabi-Yau manifolds (algebro-geometric aspects)
14M25 Toric varieties, Newton polyhedra, Okounkov bodies
81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
14J30 \(3\)-folds
14J45 Fano varieties

References:

[1] Adem, A.; Leida, J.; Ruan, Y., (Orbifolds and Stringy Topology. Orbifolds and Stringy Topology, Cambridge Tracts in Mathematics, vol. 171 (2007), Cambridge University Press: Cambridge University Press Cambridge) · Zbl 1157.57001
[2] Artebani, M.; Comparin, P.; Guilbot, R., Families of Calabi-Yau hypersurfaces in \(\mathbb{Q} \)-Fano toric varieties, J. Math. Pures Appl. (9), 106, 2, 319-341 (2016) · Zbl 1353.14061
[3] Batyrev, V. V., Dual polyhedra and mirror symmetry for Calabi-Yau hypersurfaces in toric varieties, J. Algebr. Geom., 3, 3, 493-535 (1994) · Zbl 0829.14023
[4] Batyrev, V. V., Stringy Hodge numbers of varieties with Gorenstein canonical singularities, (Integrable Systems and Algebraic Geometry. Integrable Systems and Algebraic Geometry, Kobe/Kyoto 1997 (1998), World Sci. Publ.: World Sci. Publ. River Edge, NJ), 1-31 · Zbl 0963.14015
[5] Batyrev, V. V., The stringy Euler number of Calabi-Yau hypersurfaces in toric varieties and the Mavlyutov duality, Pure Appl. Math. Q., 13, 1, 1-47 (2017) · Zbl 1400.14139
[6] Batyrev, V. V.; Borisov, L. A., Mirror duality and string-theoretic Hodge numbers, Invent. Math., 126, 3, 183-203 (1996) · Zbl 0872.14035
[7] Batyrev, V. V.; Dais, D. I., Strong McKay correspondence, string-theoretic Hodge numbers and mirror symmetry, Topology, 35, 4, 901-929 (1996) · Zbl 0864.14022
[8] Batyrev, V. V.; Kasprzyk, A. M.; Schaller, K., On the fine interior of three-dimensional canonical Fano polytopes, (Kasprzyk, A. M.; Nill, B., Interactions with Lattice Polytopes (2020), Springer), arXiv:1911.12048, in press
[9] Batyrev, V. V.; Schaller, K., Stringy \(E\)-functions of canonical toric Fano threefolds and their applications, Izv. Ross. Akad. Nauk Ser. Mat., 83, 4, 26-49 (2019) · Zbl 1427.14107
[10] Borisov, L. A., Berglund-Hübsch mirror symmetry via vertex algebras, Comm. Math. Phys., 320, 1, 73-99 (2013) · Zbl 1317.17032
[11] Brown, G.; Kasprzyk, A., Four-dimensional projective orbifold hypersurfaces, Exp. Math., 25, 2, 176-193 (2016) · Zbl 1343.14039
[12] Candelas, P.; de la Ossa, X. C.; Green, P. S.; Parkes, L., A pair of Calabi-Yau manifolds as an exactly soluble superconformal theory, Nuclear Phys. B, 359, 1, 21-74 (1991) · Zbl 1098.32506
[13] Candelas, P.; de la Ossa, X.; Katz, S., Mirror symmetry for Calabi-Yau hypersurfaces in weighted \(\mathbf{P}_4\) and extensions of Landau-Ginzburg theory, Nuclear Phys. B, 450, 1-2, 267-290 (1995) · Zbl 0896.14023
[14] Candelas, P.; Lynker, M.; Schimmrigk, R., Calabi-Yau manifolds in weighted \(\mathbf{P}_4\), Nuclear Phys. B, 341, 2, 383-402 (1990) · Zbl 0962.14029
[15] Chen, W.; Ruan, Y., A new cohomology theory of orbifold, Comm. Math. Phys., 248, 1, 1-31 (2004) · Zbl 1063.53091
[16] Chiodo, A.; Ruan, Y., LG/CY correspondence: the state space isomorphism, Adv. Math., 227 (2010) · Zbl 1245.14038
[17] Clader, E.; Ruan, Y., Mirror symmetry constructions, (B-Model Gromov-Witten Theory. B-Model Gromov-Witten Theory, Trends Math. (2018), Birkhäuser/Springer: Birkhäuser/Springer Cham), 1-77 · Zbl 1423.81144
[18] Corti, A.; Golyshev, V., Hypergeometric equations and weighted projective spaces, Sci. China Math., 54, 8, 1577-1590 (2011) · Zbl 1237.14022
[19] Cox, D.; Little, J.; Schenck, H., Toric Varieties (2011), American Mathematical Society · Zbl 1223.14001
[20] Greene, B. R.; Plesser, M. R., Duality in Calabi-Yau moduli space, Nuclear Phys. B, 338, 1, 15-37 (1990)
[21] Greene, B. R.; Roan, S.-S.; Yau, S.-T., Geometric singularities and spectra of Landau-Ginzburg models, Comm. Math. Phys., 142, 2, 245-259 (1991), http://projecteuclid.org/euclid.cmp/1104248584 · Zbl 0735.53054
[22] Hori, K.; Vafa, C., Mirror symmetry (2000), arXiv:hep-th/0002222v3
[23] Kasprzyk, A. M., Canonical toric Fano threefolds, Canad. J. Math., 62, 6, 1293-1309 (2010) · Zbl 1264.14055
[24] Kelly, T. L., Berglund-Hübsch-Krawitz mirrors via Shioda maps, Adv. Theor. Math. Phys., 17, 6, 1425-1449 (2013), http://projecteuclid.org/euclid.atmp/1408626548 · Zbl 1316.14076
[25] Khovanskiĭ, A. G., Newton polyhedra and the genus of complete intersections, Funktsional. Anal. i Prilozhen., 12, 1, 51-61 (1978) · Zbl 0387.14012
[26] Klemm, A.; Schimmrigk, R., Landau-Ginzburg string vacua, Nuclear Phys. B, 411, 2-3, 559-583 (1994) · Zbl 1049.81601
[27] Krawitz, M., FJRW Rings and Landau-GInzburg Mirror Symmetry (2010), University of Michigan, (Ph.D. thesis) · Zbl 1250.81087
[28] Kreuzer, M.; Skarke, H., No mirror symmetry in Landau-Ginzburg spectra!, Nuclear Phys. B, 388, 1, 113-130 (1992)
[29] Kreuzer, M.; Skarke, H., Calabi-Yau \(4\)-folds and toric fibrations, J. Geom. Phys., 26, 3-4, 272-290 (1998) · Zbl 0956.14030
[30] Kreuzer, M.; Skarke, H., Classification of reflexive polyhedra in three dimensions, Adv. Theor. Math. Phys., 2, 4, 853-871 (1998) · Zbl 0934.52006
[31] Kreuzer, M.; Skarke, H., Complete classification of reflexive polyhedra in four dimensions, Adv. Theor. Math. Phys., 4 (2000) · Zbl 1017.52007
[32] Lynker, M.; Schimmrigk, R.; Wißkirchen, A., Landau-Ginzburg vacua of string, M- and F-theory at \(c = 12\), Nuclear Phys. B, 550, 1-2, 123-150 (1999) · Zbl 1063.14504
[33] A.R. Mavlyutov, Mirror symmetry for Calabi-Yau complete intersections in Fano toric varieties. arXiv:1103.2093, unpublished results 2011.
[34] Ono, K.; Roan, S.-S., Vafa’s formula and equivariant \(K\)-theory, J. Geom. Phys., 10, 3, 287-294 (1993) · Zbl 0786.55003
[35] Reid, M., Canonical \(3\)-folds, (Journées de Géometrie Algébrique d’Angers, Juillet 1979/Algebraic Geometry, Angers, 1979 (1980), Sijthoff & Noordhoff: Sijthoff & Noordhoff Alphen aan den Rijn-Germantown, Md), 273-310 · Zbl 0451.14014
[36] Roan, S.-S., On Calabi-Yau orbifolds in weighted projective spaces, Internat. J. Math., 1, 2, 211-232 (1990) · Zbl 0793.14031
[37] Schöller, F.; Skarke, H., All weight systems for Calabi-Yau fourfolds from reflexive polyhedra, Comm. Math. Phys., 372, 2, 657-678 (2019) · Zbl 1429.32042
[38] Skarke, H., Weight systems for toric Calabi-Yau varieties and reflexivity of Newton polyhedra, Modern Phys. Lett. A, 11, 20, 1637-1652 (1996) · Zbl 1020.14503
[39] Vafa, C., String vacua and orbifoldized LG models, Modern Phys. Lett. A, 4, 12, 1169-1185 (1989)
[40] Witten, E., Mirror manifolds and topological field theory, (Essays on Mirror Manifolds (1992), Int. Press: Int. Press Hong Kong), 120-158 · Zbl 0834.58013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.