×

Special hypergeometric motives and their \(L\)-functions: Asai recognition. (English) Zbl 1511.11047

The generalized hypergeometric functions play an important role in arithmetic and algebraic geometry since they come quite naturally as periods of certain algebraic varieties, and consequently they encode important information about the invariants of these varieties. In the paper under review, the authors explain similar hypergeometric Ramanujan-type formulas for \(\frac{1}{\pi^2}\) in higher rank. Their main result is to experimentally identify that the \(L\)-function of certain specializations of hypergeometric motives araising from these formulas can be derived from Asai \(L\)-functions of Hilbert modular forms of weight \((2, 4)\) over real quadratic fields.

MSC:

11F66 Langlands \(L\)-functions; one variable Dirichlet series and functional equations
11F41 Automorphic forms on \(\mbox{GL}(2)\); Hilbert and Hilbert-Siegel modular groups and their modular and automorphic forms; Hilbert modular surfaces
33C20 Generalized hypergeometric series, \({}_pF_q\)
33F10 Symbolic computation of special functions (Gosper and Zeilberger algorithms, etc.)

Software:

Magma; LMFDB

References:

[1] Almkvist, G.; Guillera, J., Ramanujan-like series for \(####\) and string theory, Exp. Math, 21, 3, 223-234 (2012) · Zbl 1259.81041 · doi:10.1080/10586458.2012.656059
[2] Asai, T., On certain Dirichlet series associated with Hilbert modular forms and Rankin’s method, Math. Ann., 226, 1, 81-94 (1977) · Zbl 0326.10024 · doi:10.1007/BF01391220
[3] Beukers, F.; Cohen, H.; Mellit, A., Finite hypergeometric functions, Pure Appl. Math. Q, 11, 4, 559-589 (2015) · Zbl 1397.11162 · doi:10.4310/PAMQ.2015.v11.n4.a2
[4] Bosma, W.; Cannon, J.; Playoust, C., The Magma algebra system. I. The user language, J. Symbolic Comput, 24, 3-4, 235-265 (1997) · Zbl 0898.68039 · doi:10.1006/jsco.1996.0125
[5] Candelas, P.; de la Ossa, X.; Green, P. S.; Parkes, L., A pair of Calabi-Yau manifolds as an exactly soluble superconformal theory, Nuclear Phys. B, 359, 1, 21-74 (1991) · Zbl 1098.32506 · doi:10.1016/0550-3213(91)90292-6
[6] Chan, H. H.; Cooper, S., Rational analogues of Ramanujan’s series for, Math. Proc. Camb. Phil. Soc., 153, 2, 361-383 (2012) · Zbl 1268.11165 · doi:10.1017/S0305004112000254
[7] Clemens, C. H., A scrapbook of complex curve theory, 55 (2003), Providence, RI: Graduate Studies in Mathematics, American Mathematical Society, Providence, RI · Zbl 1030.14010
[8] Cohen, H., Computing L-functions: A survey, J. Théor. Nombres Bordeaux, 27, 3, 699-726 (2015) · Zbl 1397.11079 · doi:10.5802/jtnb.920
[9] Dembélé, L.; Voight, J.; Darmon, H.; Diamond, F.; Dieulefait, L. V.; Edixhoven, B.; Rotger, V., Elliptic Curves, Hilbert Modular Forms and Galois Deformations, Explicit methods for Hilbert modular forms. In, 135-198 (2013), Basel: Advanced Courses in Mathematics CRM Barcelona. Birkhäuser/Springer, Basel · Zbl 1326.11018 · doi:10.1007/978-3-0348-0618-3_4
[10] Dembélé, L.; Voight, J. (2019)
[11] Doran, C. F.; Kelly, T. L.; Salerno, A.; Sperber, S.; Voight, J.; Whitcher, U., Zeta functions of alternate mirror Calabi-Yau families, Isr. J. Math., 228, 2, 665-705 (2018) · Zbl 1403.14055 · doi:10.1007/s11856-018-1783-0
[12] Doran, C. F.; Kelly, T. L.; Salerno, A.; Sperber, S.; Voight, J.; Whitcher, U., Hypergeometric decomposition of symmetric K3 quartic pencils, Res. Math. Sci., 7, 2 (2020) · Zbl 1441.14128 · doi:10.1007/s40687-020-0203-3
[13] Dwork, B., p-adic cycles, Inst. Hautes Études Sci. Publ. Math, 37, 1, 27-115 (1969) · Zbl 0284.14008 · doi:10.1007/BF02684886
[14] Elkies, N. D.; Schütt, M. (2008)
[15] Freitag, E., Hilbert Modular Forms (1990), Berlin: Springer-Verlag, Berlin · Zbl 0702.11029
[16] van der Geer, G., Hilbert Modular Surfaces (1988), Berlin: Springer-Verlag, Berlin · Zbl 0634.14022
[17] Greene, J., Hypergeometric functions over finite fields, Trans. Amer. Math. Soc., 301, 1, 77-101 (1987) · Zbl 0629.12017 · doi:10.1090/S0002-9947-1987-0879564-8
[18] Guillera, J., Some binomial series obtained by the WZ-method, Adv. Appl. Math, 29, 4, 599-603 (2002) · Zbl 1013.33010 · doi:10.1016/S0196-8858(02)00034-9
[19] Guillera, J., About a new kind of Ramanujan-type series, Exp. Math, 12, 4, 507-510 (2003) · Zbl 1083.33004 · doi:10.1080/10586458.2003.10504518
[20] Guillera, J., Generators of some Ramanujan formulas, Ramanujan J, 11, 1, 41-48 (2006) · Zbl 1109.33029 · doi:10.1007/s11139-006-5306-y
[21] Guillera, J., A new Ramanujan-like series for, Ramanujan J, 26, 3, 369-374 (2011) · Zbl 1238.33003 · doi:10.1007/s11139-010-9259-9
[22] Guillera, J., More Ramanujan-Orr formulas for \(####\), New Zealand J. Math., 47, 151-160 (2017) · Zbl 1386.33015
[23] Guillera, J. (2019). Bilateral sums related to Ramanujan-like series. Preprint arXiv:1610.04839v2 [math.NT], 13 pp. · Zbl 1428.33015
[24] Guillera, J. (2019). Bilateral Ramanujan-like series for \(####\) and their congruences. Preprint arXiv:1908.05123 [math.NT].
[25] Guillera, J.; Zudilin, W., “Divergent” Ramanujan-type supercongruences, Proc. Amer. Math. Soc., 140, 3, 765-777 (2012) · Zbl 1276.11027 · doi:10.1090/S0002-
[26] Guillera, J.; Zudilin, W.; Berndt, B. C.; Prasad, D., The Legacy of Srinivasa Ramanujan, 20, Ramanujan-type formulae for \(####\): the art of translation, 181-195 (2013), Mysore · Zbl 1371.11162
[27] Igusa, J., Class number of a definite quaternion with prime discriminant, Proc. Nat. Acad. Sci. USA, 44, 4, 312-314 (1958) · Zbl 0081.03601 · doi:10.1073/pnas.44.4.312
[28] Katz, N. M., p-Adic interpolation of real analytic Eisenstein series, Ann. of Math, 104, 3, 459-571 (1976) · Zbl 0354.14007 · doi:10.2307/1970966
[29] Katz, N. M., Annals of Mathematics Studies, 124, Exponential sums and differential equations (1990), Princeton, NJ: Princeton University Press, Princeton, NJ · Zbl 0731.14008
[30] Krishnamurthy, M., Determination of cusp forms on GL(2) by coefficients restricted to quadratic subfields (with an appendix by Dipendra Prasad and Dinakar Ramakrishnan), J. Number Theory, 132, 6, 1359-1384 (2012) · Zbl 1294.11057 · doi:10.1016/j.jnt.2011.09.014
[31] Krishnamurthy, M., The Asai transfer to GL_4 via the Langlands-Shahidi method, Int. Math. Res. Not., 2003, 41, 2221-2254 (2003) · Zbl 1048.11042 · doi:10.1155/S1073792803130528
[32] The LMFDB Collaboration (2019)
[33] Prasad, D., Invariant forms for representations of GL_2 over a local field, Amer. J. Math, 114, 6, 1317-1363 (1992) · Zbl 0780.22004 · doi:10.2307/2374764
[34] Ramakrishnan, D., Modularity of solvable Artin representations of GO(4)-type, Int. Math. Res. Not., 2002, 1, 1-54 (2002) · Zbl 1002.11045 · doi:10.1155/S1073792802000016
[35] Ramanujan, S.; Hardy, G. H.; Sechu Aiyar, P. V.; Wilson, B. M., Quart. J. Math. Oxford Ser. Collected papers of Srinivasa Ramanujan, 45, 2, Modular equations and approximations to π, 23-39 (1962), Cambridge University Press, Cambridge (1927) &: Chelsea Publ, Cambridge University Press, Cambridge (1927) &: Cambridge University Press, Cambridge (1927) &: Chelsea Publ, Cambridge University Press, Cambridge (1927) &, New York
[36] Roberts, D. P.; Rodriguez-Villegas, F.; Wood, D. R.; de Gier, J.; Praeger, C. E.; Tao, T., 2017 MATRIX Annals, MATRIX Book Ser, 2, Hypergeometric supercongruences, 435-439 (2019), Springer, Cham · Zbl 1443.11022
[37] Roberts, D., Rodriguez-Villegas, F., Watkins, M., Hypergeometric motives, in preparation. · Zbl 1506.11097
[38] Taylor, R., On Galois representations associated to Hilbert modular forms, Invent. Math., 98, 2, 265-280 (1989) · Zbl 0705.11031 · doi:10.1007/BF01388853
[39] Zhao, Y. (2017)
[40] Zudilin, W. (2018). A hypergeometric version of the modularity of rigid Calabi-Yau manifolds. SIGMA. 14: 086. doi: · Zbl 1456.11073
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.