×

Voisin’s conjecture for zero-cycles on Calabi-Yau varieties and their mirrors. (English) Zbl 1437.14015

This paper studies a conjecture of C. Voisin [Chow rings, decomposition of the diagonal, and the topology of families. Princeton, NJ: Princeton University Press (2014; Zbl 1288.14001)], which is formulated as follows. For a smooth projective complex variety \(X\), let \(A^j(X)\) denote the Chow group of codimension \(j\) algebraic cycles on \(X\) modulo rational equivalence.
Conjecture. (Conjeture 4.37 in [C. Voisin, Chow rings, decomposition of the diagonal, and the topology of families. Princeton, NJ: Princeton University Press (2014; Zbl 1288.14001)]): Let \(X\) be a smooth projective complex variety of dimension \(n\) with \(j^{i,0}(X)=0\) for all \(0<j<n\). Then the following statements are equivalent:
(i) For any zero-cycle \(a, a^{\prime}\in A^n(X)\) of degree zero, \(a\times a^{\prime}=(-1)^n a^{\prime}\times a\in A^{2n}(X)\). Here \(a\times a^{\prime}\) denotes the cycle class \(p_1^*(a)\cdot p_2^*(a^{\prime})\in A^{2n}(X\times X)\) where \(p_i^*\) is the projection to the \(i\)-th compoments for \(i-1,2\),
(ii) the geometric genus \(p_g(X)\leq 1\).
The implication \(i)\Rightarrow (ii)\) is a theorem, while the other implication is the conjecture.
This notes presents a general critrion on the validity of the conjecture for some specific varieties.
The main result and its corollaries are formulated as follows.
Theorem. Let \(X\) be a smooth projective complex variety of dimension \(n\leq 5\) with \(h^{i,0}(X)=0\) for \(0 < i < n\), and \(p_g(X)=1\). Assume further that
(1) \(X\) is rationally dominated by a variety \(X^{\prime}\) of dimension \(n\) such that \(X^{\prime}\) has finite dimensional motive and that the Lefschetz standard conjecture \(B(X^{\prime})\) is true.
(2) \(X\) is \(\widetilde{N}_1^{\prime}\)-maximal: (for the definition, see Proposition 3.3).
(3) \(X\) is rationally dominated by a variety \(X^{\prime\prime}\) of dimension \(n\) and the Hodge conjecture is true for \(X^{\prime\prime}\times X^{\prime\prime}\).
Then the Voisin conjecture is true for \(X\), that is, any \(a\times a^{\prime}\in A^n_{\mathrm{hom}}(X)\) satisfies \(a\times a^{\prime}=(-1)^na^{\prime}\times a\in A^{2n}(X\times X)\).
Corollaries: (1) Let \(X\subset\mathbb{P}^5(\mathbb{C})\) be the sextic Fermat fourfold \(X_0^6+\cdots+X_5^6=0\). Then the Voisin conjecture is true for \(X\).
(2) Let \(X\subset\mathbb{P}^4(1^4,2)\) be the Calabi-Yau threefold defined as \(X_0^6+X_1^6+X_2^6+X_3^6+X_4^3=0\). Then The Voisin conjecture holds for \(X\).
Proof rests on results of C. Vial [Proc. Lond. Math. Soc. (3) 106, No. 2, 410–444 (2013; Zbl 1271.14010)] on refined Künneth decomposition, and refined Chow-Künneth decomposition (under the extra assupmtion of the existence of a finite-dimensional motive on \(X\)).

MSC:

14C15 (Equivariant) Chow groups and rings; motives
14C25 Algebraic cycles
14C30 Transcendental methods, Hodge theory (algebro-geometric aspects)

References:

[1] Y. André, Motifs de dimension finie (d’après S.-I. Kimura, P. O’Sullivan…). Astérisque no. 299 (2005), Exp. No. 929, viii, 115-145. MR2167204 Zbl1080.14010 · Zbl 1080.14010
[2] R. Barlow, Rational equivalence of zero cycles for some more surfaces with p_g = 0. Invent. Math. 79 (1985), 303-308. MR778129 Zbl0584.14002 · Zbl 0584.14002
[3] I. Bauer, F. Catanese, F. Grunewald, R. Pignatelli, Quotients of products of curves, new surfaces with p_g = 0 and their fundamental groups. Amer. J.Math. 134 (2012), 993-1049. MR2956256 Zbl1258.14043 · Zbl 1258.14043
[4] I. Bauer, D. Frapporti, Bloch’s conjecture for generalized Burniat type surfaces with p_g = 0. Rend. Circ. Mat. Palermo (2)64 (2015), 27-42. MR3324371 Zbl1330.14009 · Zbl 1330.14009
[5] I. Bauer, R. Pignatelli, Product-quotient surfaces: new invariants and algorithms. Groups Geom. Dyn. 10 (2016), 319-363. MR3460339 Zbl1348.14021 · Zbl 1348.14021
[6] A. Beauville, Some surfaces with maximal Picard number. J. Éc. polytech. Math. 1 (2014), 101-116. MR3322784 Zbl1326.14080 · Zbl 1326.14080
[7] G. Bini, B. van Geemen, T.L. Kelly, Mirror quintics, discrete symmetries and Shioda maps. J. Algebraic Geom. 21 (2012), 401-412. MR2914798 Zbl1246.14054 · Zbl 1246.14054
[8] S. Bloch, Lectures on algebraic cycles. Duke University, Mathematics Department, Durham, N.C. 1980. MR558224 Zbl0436.14003 · Zbl 0436.14003
[9] S. Bloch, A. Kas, D. Lieberman, Zero cycles on surfaces with p_g = 0. Compositio Math. 33 (1976), 135-145. MR0435073 Zbl0337.14006 · Zbl 0337.14006
[10] S. Bloch, A. Ogus, Gersten’s conjecture and the homology of schemes. Ann. Sci. École Norm. Sup. (4) 7 (1974), 181-201 (1975). MR0412191 Zbl0307.14008 · Zbl 0307.14008
[11] S. Bloch, V. Srinivas, Remarks on correspondences and algebraic cycles. Amer. J.Math. 105 (1983), 1235-1253. MR714776 Zbl0525.14003 · Zbl 0525.14003
[12] M. Bonfanti, On the cohomology of regular surfaces isogenous to a product of curves with χ(𝓞_S) = 2. Preprint 2015, arXiv:1512.03168v1
[13] M. Brion, Log homogeneous varieties. In: Proceedings of the XVIth Latin American Algebra Colloquium, 1-39, Rev. Mat. Iberoamericana, Madrid 2007. MR2500349 Zbl1221.14053 · Zbl 1221.14053
[14] P. Candelas, X.C. dela Ossa, P.S. Green, L.Parkes, A pair of Calabi-Yau manifolds as an exactly soluble superconformal theory. Nuclear Phys. B359 (1991), 21-74. MR1115626 Zbl1098.32506 · Zbl 1098.32506
[15] F. Charles, E. Markman, The standard conjectures for holomorphic symplectic varieties deformation equivalent to Hilbert schemes of K3 surfaces. Compos. Math. 149 (2013), 481-494. MR3040747 Zbl1312.14012 · Zbl 1312.14012
[16] S. Cynk, K. Hulek, Higher-dimensional modular Calabi-Yau manifolds. Canad. Math. Bull. 50 (2007), 486-503. MR2364200 Zbl1141.14009 · Zbl 1141.14009
[17] M.A.A. deCataldo, L.Migliorini, The Chow groups and the motive of the Hilbert scheme of points on a surface. J. Algebra251 (2002), 824-848. MR1919155 Zbl1033.14004 · Zbl 1033.14004
[18] P. Deligne, Théorie de Hodge. II. Inst. Hautes Études Sci. Publ. Math. no.40 (1971), 5-57. MR0498551 Zbl0219.14007 · Zbl 0219.14007
[19] P. Deligne, La conjecture de Weil pour les surfaces K3. Invent. Math. 15 (1972), 206-226. MR0296076 Zbl0219.14022 · Zbl 0219.14022
[20] C. Delorme, Espaces projectifs anisotropes. Bull. Soc. Math. France103 (1975), 203-223. MR0404277 Zbl0314.14016 · Zbl 0314.14016
[21] I. Dolgachev, Weighted projective varieties. In: Group actions and vector fields (Vancouver, B.C., 1981), volume 956 of Lecture Notes in Math., 34-71, Springer 1982. MR704986 Zbl0516.14014 · Zbl 0516.14014
[22] E.M. Friedlander, Filtrations on algebraic cycles and homology. Ann. Sci. École Norm. Sup. (4) 28 (1995), 317-343. MR1326671 Zbl0854.14006 · Zbl 0854.14006
[23] E.M. Friedlander, B.Mazur, Filtrations on the homology of algebraic varieties. Mem. Amer. Math. Soc. 110 (1994), x+110 pages. MR1211371 Zbl0841.14019 · Zbl 0841.14019
[24] W. Fulton, Intersection theory. Springer 1984. MR732620 Zbl0541.14005 · Zbl 0541.14005
[25] A. Garbagnati, B.van Geemen, Examples of Calabi-Yau threefolds parametrised by Shimura varieties. Rend. Semin. Mat. Univ. Politec. Torino68 (2010), 271-287. MR2807280 Zbl1211.14045 · Zbl 1211.14045
[26] B.R. Greene, M.R. Plesser, Duality in Calabi-Yau moduli space. Nuclear Phys. B338 (1990), 15-37. MR1059831
[27] V.Guletskiı̆, C.Pedrini, The Chow motive of the Godeaux surface. In: Algebraic geometry, 179-195, de Gruyter 2002. MR1954064 Zbl1054.14009 · Zbl 1054.14009
[28] K. Hulek, R.Kloosterman, M.Schütt, Modularity of Calabi-Yau varieties. In: Global aspects of complex geometry, 271-309, Springer 2006. MR2264114 Zbl1114.14026 · Zbl 1114.14026
[29] K. Hulek, H.Verrill, On the modularity of Calabi-Yau threefolds containing elliptic ruled surfaces. In: Mirror symmetry. V, volume38 of AMS/IP Stud. Adv. Math., 19-34, Amer. Math. Soc. 2006. MR2282953 Zbl1115.14031 · Zbl 1115.14031
[30] F. Ivorra, Finite dimensional motives and applications following S.-I. Kimura, P.O’Sullivan and others. Expanded version of a lecture given at the summer school “Autour des motifs, Asian-French summer school on algebraic geometry and number theory”, IHES and Univ. Paris-Sud, July 2006.
[31] J.N. Iyer, Absolute Chow-Künneth decomposition for rational homogeneous bundles and for log homogeneous varieties. Michigan Math. J. 60 (2011), 79-91. MR2785865 Zbl1233.14003 · Zbl 1233.14003
[32] J.N.N. Iyer, Murre’s conjectures and explicit Chow-Künneth projections for varieties with a NEF tangent bundle. Trans. Amer. Math. Soc. 361 (2009), 1667-1681. MR2457413 Zbl1162.14004 · Zbl 1162.14004
[33] U. Jannsen, On finite-dimensional motives and Murre’s conjecture. In: Algebraic cycles and motives. Vol. 2, volume 344 of London Math. Soc. Lecture Note Ser., 112-142, Cambridge Univ. Press 2007. MR2187152 Zbl1127.14007 · Zbl 1127.14007
[34] S. Kadir, N. Yui, Motives and mirror symmetry for Calabi-Yau orbifolds. In: Modular forms and string duality, volume54 of Fields Inst. Commun., 3-46, Amer. Math. Soc. 2008. MR2454318 Zbl1167.14023 · Zbl 1167.14023
[35] B. Kahn, J.P. Murre, C. Pedrini, On the transcendental part of the motive of a surface. In: Algebraic cycles and motives. Vol. 2, volume 344 of London Math. Soc. Lecture Note Ser., 143-202, Cambridge Univ. Press 2007. MR2187153 Zbl1130.14008 · Zbl 1130.14008
[36] S.-J. Kang, Refined motivic dimension of some Fermat varieties. Bull. Aust. Math. Soc. 93 (2016), 223-230. MR3472540 Zbl1342.14016 · Zbl 1342.14016
[37] S.-I. Kimura, Chow groups are finite dimensional, in some sense. Math. Ann. 331 (2005), 173-201. MR2107443 Zbl1067.14006 · Zbl 1067.14006
[38] S.L. Kleiman, Algebraic cycles and the Weil conjectures. In: Dix exposés sur la cohomologie des schémas, volume3 of Adv. Stud. Pure Math., 359-386, North-Holland 1968. MR292838 Zbl0198.25902 · Zbl 0198.25902
[39] S.L. Kleiman, The standard conjectures. In: Motives (Seattle, WA, 1991), volume55 of Proc. Sympos. Pure Math., 3-20, Amer. Math. Soc. 1994. MR1265519 Zbl0820.14006 · Zbl 0820.14006
[40] R. Laterveer, Some desultory remarks concerning algebraic cycles and Calabi-Yau threefolds. Rend. Circ. Mat. Palermo (2) 65 (2016), 333-344. MR3535459 Zbl1360.14017 · Zbl 1360.14017
[41] R. Laterveer, Some results on a conjecture of Voisin for surfaces of geometric genus one. Boll. Unione Mat. Ital. 9(2016), 435-452. MR3575811 Zbl1375.14025 · Zbl 1375.14025
[42] R. Laterveer, Some new examples of smash-nilpotent algebraic cycles. Glasg. Math. J. 59 (2017), 623-634. MR3682002 Zbl06791282 · Zbl 1378.14005
[43] R. Laterveer, Algebraic cycles and Todorov surfaces. To appear in Kyoto Journal of Mathematics. Preprint 2016, arXiv:1609.09629 · Zbl 1402.14007
[44] R. Laterveer, Algebraic cycles on a very special EPW sextic. To appear in Rend. Sem. Mat. Univ. Padova. Preprint 2017, arXiv:1712.05982 · Zbl 1422.14014
[45] D.G. Markushevich, M.A. Olshanetsky, A.M. Perelomov, Resolution of singularities (toric method), appendix to Markushevich, D. G., Olshanetsky, M. A. and Perelomov, A. M.: Description of a class of superstring compactifications related to semisimple Lie algebras. Comm. Math. Phys. 111 (1987), 247-274. MR899851 0628.53065 · Zbl 0628.53065
[46] B.J.J. Moonen, Y.G. Zarhin, Hodge classes on abelian varieties of low dimension. Math. Ann. 315 (1999), 711-733. MR1731466 Zbl0947.14005 · Zbl 0947.14005
[47] G. Moore, Arithmetic and Attractors. Preprint 1998, 2007, arXiv:hep-th/9807087
[48] D.R. Morrison, Mirror symmetry and rational curves on quintic threefolds: a guide for mathematicians. J. Amer. Math. Soc. 6 (1993), 223-247. MR1179538 Zbl0843.14005 · Zbl 0843.14005
[49] H. Movasati, A course in Hodge theory with emphasis on multiple integrals. Manuskript 2017,
[50] D. Mumford, Rational equivalence of 0-cycles on surfaces. J. Math. Kyoto Univ. 9 (1968), 195-204. MR0249428 Zbl0184.46603 · Zbl 0184.46603
[51] J.P. Murre, J.Nagel, C.A.M. Peters, Lectures on the theory of pure motives, volume61 of University Lecture Series. Amer. Math. Soc. 2013. MR3052734 Zbl1273.14002 · Zbl 1273.14002
[52] C. Pedrini, On the finite dimensionality of a K3 surface. Manuscripta Math. 138 (2012), 59-72. MR2898747 Zbl1278.14012 · Zbl 1278.14012
[53] C. Pedrini, C.Weibel, Some surfaces of general type for which Bloch’s conjecture holds. In: Recent advances in Hodge theory, volume 427 of London Math. Soc. Lecture Note Ser., 308-329, Cambridge Univ. Press 2016. MR3409880 Zbl06701524 · Zbl 1388.14114
[54] S.-S. Roan, On the generalization of Kummer surfaces. J. Differential Geom. 30 (1989), 523-537. MR1010170 Zbl0661.14031 · Zbl 0661.14031
[55] A.A. Rojtman, The torsion of the group of 0-cycles modulo rational equivalence. Ann. of Math. (2)111 (1980), 553-569. MR577137 Zbl0504.14006 · Zbl 0504.14006
[56] A.J. Scholl, Classical motives. In: Motives (Seattle, WA, 1991), volume55 of Proc. Sympos. Pure Math., 163-187, Amer. Math. Soc. 1994. MR1265529 Zbl0814.14001 · Zbl 0814.14001
[57] T. Shioda, The Hodge conjecture for Fermat varieties. Math. Ann. 245 (1979), 175-184. MR552586 Zbl0403.14007 · Zbl 0403.14007
[58] T. Shioda, What is known about the Hodge conjecture? In: Algebraic varieties and analytic varieties (Tokyo, 1981), volume1 of Adv. Stud. Pure Math., 55-68, North-Holland 1983. MR715646 Zbl0527.14010 · Zbl 0527.14010
[59] T. Shioda, T.Katsura, On Fermat varieties. Tôhoku Math. J. (2) 31 (1979), 97-115. MR526513 Zbl0415.14022 · Zbl 0415.14022
[60] S.G. Tankeev, On the standard conjecture of Lefschetz type for complex projective threefolds. II. (Russian) Izv. Ross. Akad. Nauk Ser. Mat. 75 (2011), 177-194. English translation in Izv. Math. 75 (2011), 104-1062. MR2884667 Zbl1234.14009 · Zbl 1234.14009
[61] B.van Geemen, N.O. Nygaard, On the geometry and arithmetic of some Siegel modular threefolds. J. Number Theory53 (1995), 45-87. MR1344832 Zbl0838.11047 · Zbl 0838.11047
[62] C. Vial, Algebraic cycles and fibrations. Doc. Math. 18 (2013), 1521-1553. MR3158241 Zbl1349.14027 · Zbl 1349.14027
[63] C. Vial, Niveau and coniveau filtrations on cohomology groups and Chow groups. Proc. Lond. Math. Soc. (3) 106 (2013), 410-444. MR3021467 Zbl1271.14010 · Zbl 1271.14010
[64] C. Vial, Projectors on the intermediate algebraic Jacobians. New York J.Math. 19 (2013), 793-822. MR3141813 Zbl1292.14005 · Zbl 1292.14005
[65] C. Vial, Chow-Künneth decomposition for 3- and 4-folds fibred by varieties with trivial Chow group of zero-cycles. J. Algebraic Geom. 24 (2015), 51-80. MR3275654 Zbl1323.14006 · Zbl 1323.14006
[66] C. Vial, Remarks on motives of abelian type. Tohoku Math. J. (2) 69 (2017), 195-220. MR3682163 Zbl06775252 · Zbl 1386.14031
[67] C. Voisin, Sur les zéro-cycles de certaines hypersurfaces munies d’un automorphisme. Ann. Scuola Norm. Sup. Pisa Cl.Sci. (4) 19 (1992), 473-492. MR1205880 Zbl0786.14006 · Zbl 0786.14006
[68] C. Voisin, Remarks on zero-cycles of self-products of varieties. In: Moduli of vector bundles (Sanda, 1994; Kyoto, 1994), 265-285, Dekker 1996. MR1397993 Zbl0912.14003 · Zbl 0912.14003
[69] C. Voisin, Symétrie miroir, volume 2 of Panoramas et Synthèses. Société Mathématique de France, Paris 1996. MR1396787 Zbl0849.14001 · Zbl 0849.14001
[70] C. Voisin, Théorie de Hodge et géométrie algébrique complexe, volume10 of Cours Spécialisés. Société Mathématique de France, Paris 2002. MR1988456 Zbl1032.14001 · Zbl 1032.14001
[71] C. Voisin, Bloch’s conjecture for Catanese and Barlow surfaces. J. Differential Geom. 97 (2014), 149-175. MR3229054 Zbl06322514 · Zbl 1386.14145
[72] C. Voisin, Chow rings, decomposition of the diagonal, and the topology of families, volume 187 of Annals of Mathematics Studies. Princeton Univ. Press 2014. MR3186044 Zbl1288.14001 · Zbl 1288.14001
[73] Z. Xu, Algebraic cycles on a generalized Kummer variety. Preprint 2015, arXiv:1506.04297v1[math.AG]
[74] N. Yui, Modularity of Calabi-Yau varieties: 2011 and beyond. In: Arithmetic and geometry of K3 surfaces and Calabi-Yau threefolds, volume67 of Fields Inst. Commun., 101-139, Springer 2013. MR3156414 Zbl1302.14005 · Zbl 1302.14005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.