×

Frame presentations of compact hedgehogs and their properties. (English) Zbl 1533.06005

A compact hedgehog space is \(\Lambda J(\kappa)\), where \(\kappa\) is a cardinal number and \[ J(\kappa) = \left\{-\infty\right\} \cup \bigcup_{i \in \kappa}\left((\overline{\mathbb{R}} \setminus \{-\infty\}) \times \left\{i\right\}\right) \] where \(\overline{\mathbb{R}}\) is the extended real line with the compact topology generated by the subbasis: \[ \biggl\{(r, +\infty] \times \left\{i\right\}: r \in \mathbb{Q}, i \in \kappa\biggr\} \cup \biggl\{J(\kappa) \setminus \bigl([r, +\infty] \times \left\{i\right\}\bigr): r \in \mathbb{Q}, i \in \kappa\biggr\}. \] The purpose of the present paper is to study the compact topology of the hedgehog via frame presentations using generators and relations, starting from rationals, independently of any notion of real numbers. The following is a brief description of the results obtained in §{2–7}:
1.
A brief survey of definitions and facts from pointfree topology necessary for the paper is made; for more details see [J. Picado and A. Pultr, Frames and locales. Topology without points. Berlin: Springer (2012; Zbl 1231.06018)], while for general topology see [R. Engelking, General topology. Rev. and compl. ed. Berlin: Heldermann Verlag (1989; Zbl 0684.54001)].
2.
The compact hedgehog topological space via the metric topology and the Lawson topology induced by the linear order are first discussed. This leads to the point free description of the frame \(\mathcal{L}(\mathsf{c}J(\kappa))\) of the compact hedgehog with \(\kappa\) spines using generators and relations. It is shown that \(\mathcal{L}(\mathsf{c}J(\kappa))\) is a compact regular frame (Theorem 3.3), is metrisable if and only if \(\kappa \leq \aleph_0\) (Proposition 3.5) such that each regular subframe of it is also metrisable (Corollary 3.6), finally leading to the the spectrum of \(\mathcal{L}(\mathsf{c}J(\kappa))\) which is \(\Lambda J(\kappa)\) (Proposition 3.9).
3.
Introduces families \(\mathsf{F}_{\kappa}(L)\), \(\mathsf{LSC}_{\kappa}(L)\), \(\mathsf{USC}_{\kappa}(L)\), \(\mathsf{C}_{\kappa}(L) = \mathsf{LSC}_{\kappa}(L) \cap \mathsf{USC}_{\kappa}(L)\) of functions, lower semicontinuous functions, upper semicontinuous functions, continuous functions on a frame \(L\) taking values in a \(\mathcal{L}(\mathsf{c}J(\kappa))\). It is shown that every \(\kappa\)-indexed disjoint family of extended real-valued functions on a frame \(L\) (a family \(\left\langle {\mathcal{L}(\overline{\mathbb{R}})} \xrightarrow{h} {L}: i \in I\right\rangle\) is called a disjoint family if \(i \neq j \Rightarrow h_i(\bigvee_{\scriptstyle r \in \mathbb{Q}}(r, -)) \vee h_j(\bigvee_{\scriptstyle r \in \mathbb{Q}}(r, -)) = L\)) corresponds to a function in \(\mathsf{F}_{\kappa}(L)\) (Proposition 4.2) and concludes on characterising the members of \(\mathsf{LSC}_{\kappa}(L)\), \(\mathsf{USC}_{\kappa}(L)\), \(\mathsf{C}_{\kappa}(L)\) in terms of \(\kappa\)-indexed disjoint families of extended real-valued functions (Corollary 4.3). Finally, this is utilised in characterising disjoint \(\kappa\)-indexed families of cozero elements of a frame (Corollary 4.4) and the characteristic function of a \(\kappa\)-family of sublocales (given mutually disjoint family \(\mathcal{C}\) of sublocales, its characteristic function \(\chi_{\mathcal{C}}\) is the function in \(\mathsf{F}_{\kappa}(L)\) guaranteed to exist by Proposition 4.2).
4.
Recall a mutually disjoint family \(\left\langle a_i: i\in \kappa\right\rangle\) of elements of a frame \(L\) is discrete (respectively, codiscrete) if there exists a cover \(C\) of \(L\) such that for any \(c \in C\), \(c \wedge a_i = 0\) (respectively, \(c \leq a_i\)) for all \(i\) with at most one exception; further from [J. Gutiérrez García et al., J. Pure Appl. Algebra 223, No. 6, 2345–2370 (2019; Zbl 1471.06005)] (or [J. Picado and A. Pultr, Separation in point-free topology. Cham: Birkhäuser (2021; Zbl 1486.54001)]), a frame is \(\kappa\)-collectionwise normal if for every codiscrete \(\kappa\)-family \(\left\langle a_i: i\in \kappa\right\rangle\) there exists a discrete family \(\left\langle b_i: i \in \kappa\right\rangle\) such that \(a_i \vee b_i = 1\) (\(i \in I\)), a frame is totally \(\kappa\)-collectionwise normal if every closed sublocale is \(z_{\kappa}^{c}\)-embedded (a sublocale \(S\) of a frame \(L\) is \(z_{\kappa}^c\)-embedded in \(L\) if for every \(\mathcal{L}(\mathsf{c}J(\kappa)) \xrightarrow{f} S\) there exists a \(\mathcal{L}(\mathsf{c}J(\kappa)) \xrightarrow{g} L\) such that \(\nu_S(\bigvee_{\scriptstyle r \in \mathbb{Q}}g\left((r, -) \times \{i\}\right)) = \bigvee_{\scriptstyle r \in \mathbb{Q}}f\left((r, -) \times \{i\}\right)\) for every \(i \in I\), where for any sublocale \(S\), \(\nu_S \dashv \mathtt{j}_S\) with \(\mathtt{j}_S\) the inclusion map for \(S\)) and totally collectionwise normal if it is totally \(\kappa\)-collectionwise normal for every \(\kappa\). Firstly, as a correction to a result in [Gutiérrez García et al., loc. cit.], it is shown that for describing collectionwise normality one could relax to disjoint families instead of discrete families (Proposition 5.2). A localic version of the pasting lemma is developed (Proposition 5.4) using which it is shown that every totally \(\kappa\)-collectionwise normal frame is \(\kappa\)-collectionwise normal (Proposition 5.5) and hence normal (Corollary 5.6).
5.
This section characterises totally \(\kappa\)-collectionwise normal frames as precisely those where every continuous hedgehog-valued continuous function on closed sublocales have a continuous extension (Theorem 6.3) – a type of Tietze extension theorem for compact hedgehogs.
6.
In this section, in continuation from [J. Gutiérrez García et al., Houston J. Math. 35, No. 2, 469–484 (2009; Zbl 1176.54015)], some Katetov-Tong-type insertion results characterising normality is proved. In particular, it is shown at the end of this section that total \(\kappa\)-collectionwise normality is hereditary with respect to closed sublocales (Lemma 7.2) leading to a characterisation of total \(\kappa\)-collectionwise normality (Theorem 7.3).
The purpose of the remaining four sections of the paper is to treat several variants of normality and total \(\kappa\)-collectionwise normality from a unified framework. Towards this end, an object function \(\mathbb{F}\) on the category of frames is called a sublocale selection if \(\mathbb{F}(L)\) is a class of complemented sublocales of \(L\) and \(\mathbb{F}^*(L) = \left\{S^*: S \in \mathbb{F}(L)\right\}\). For instance, one could consider the sublocale selection \(\mathbb{F}_{\mathtt{c}}\), \(\mathbb{F}_{\mathtt{reg}}\), \(\mathbb{F}_{\mathtt{z}}\), \(\mathbb{F}_{\scriptstyle \delta\mathtt{reg}}\) for closed sublocales, regular closed sublocales, zero sublocales and \(\delta\)-regular closed sublocales, respectively.
Given a sublocale selection \(\mathbb{F}\), a locale \(L\) is called \(\mathbb{F}\)-normal if for any \(S, T \in \mathbb{F}(L)\) there exist \(A, B \in \mathbb{F}(L)\) such that \(S \cap A = \mathsf{O} = T \cap V\) and \(A \vee B = L\). The \(\mathbb{F}_{\mathtt{c}}\)-normality is standard normality, \(\mathbb{F}_{\mathtt{reg}}\)-normality is mild normality (see [J. Gutiérrez García and J. Picado, J. Pure Appl. Algebra 218, No. 5, 784–803 (2014; Zbl 1296.06006)]) and \(\mathbb{F}_{\mathtt{z}}\)-normality is possessed by any frame, while both \(\mathbb{F}_{\mathtt{c}}^*\)-normality or \(\mathbb{F}_{\mathtt{reg}}^*\)-normality is extremal disconnectedness and \(\mathbb{F}_{\mathtt{z}}^*\)-normality is being an \(F\)-frame.
A sublocale selection \(\mathbb{F}\) is a Katetov selection if for sublocales \(S, S', T, T'\), \(S \sqsubseteq_{\mathbb{F}} T, T' \Rightarrow S \sqsubseteq_{\mathbb{F}} T \vee T'\) and \(S, S' \sqsubseteq_{\mathbb{F}} T \Rightarrow S \cap S' \sqsubseteq_{\mathbb{F}} T\), where: \[ S \sqsubseteq_{\mathbb{F}} T \Leftrightarrow (\exists U \in \mathbb{F}(L))(\exists V \in \mathbb{F}^*(L))(S \leq V \leq U \leq T). \] A general Katetov-Tong-type insertion result for \(\mathbb{F}\)-normality is produced in Theorem 8.7, \(\mathbb{F}\)-zero sublocales and \(z\)-embeddedness is treated in §{9}, connections between \(\mathbb{F}\)-normality and normality is considered in §{10} and some general Tietze type extension theorems produced in §{11}.
On the whole, this thirty six page long paper makes a very good interesting reading.

MSC:

06D22 Frames, locales
18F70 Frames and locales, pointfree topology, Stone duality
54D15 Higher separation axioms (completely regular, normal, perfectly or collectionwise normal, etc.)
54C30 Real-valued functions in general topology
Full Text: DOI

References:

[1] Arrieta Torres, I., A Tale of Three Hedgehogs, Bachelor Thesis, University of the Basque Country UPV/EHU, Bilbao, 2017, ArXiv:1711.08656 [math.GN].
[2] Avilez, A. B.; Picado, J., Continuous extensions of real functions on arbitrary sublocales and C-, C^∗-, and z-embeddings, J. Pure Appl. Algebra, 225, 1-24 (2021) · Zbl 1473.18014 · doi:10.1016/j.jpaa.2021.106702
[3] Ball, R. N.; Walters-Wayland, J., C- and C^∗-quotients in pointfree topology, Dissertationes Mathematicae (Rozprawy Mat, 412, 1-62 (2002) · Zbl 1012.54025 · doi:10.4064/dm412-0-1
[4] Banaschewski, B., The real numbers in Pointfree Topology, Textos de Matemática, 12 (1997) · Zbl 0891.54009
[5] Banaschewski, B.; Dube, T.; Gilmour, C.; Walters-Wayland, J., Oz in pointfree topology, Quaest. Math, 32, 215-227 (2009) · Zbl 1182.06002 · doi:10.2989/QM.2009.32.2.4.797
[6] Banaschewski, B.; Gutiérrez García, J.; Picado, J., Extended real functions in pointfree topology, J. Pure Appl. Algebra, 216, 905-922 (2012) · Zbl 1260.06010 · doi:10.1016/j.jpaa.2011.10.026
[7] Banaschewski, B.; Pultr, A., A new look at pointfree metrization theorems, Comment. Math. Univ. Carolinae, 39, 167-175 (1998) · Zbl 0937.54019
[8] Blair, R. L., Rings of continuous functions, 95, A cardinal generalization of z-embedding, 7-66 (1985), Marcel Dekker Inc.: Marcel Dekker Inc., New York · Zbl 0572.54011
[9] Blair, R. L.; Swardson, M. A., Insertion and extension of hedgehog-valued functions, Indian J. Math, 29, 229-250 (1987) · Zbl 0666.54012
[10] Clarke, J.; Gilmour, C., Pseudocompact σ-frames. Math. Slovaca, 65, 289-300 (2015)
[11] Dube, T., A short note on separable frames, Comment. Math. Univ. Carolin, 37, 375-377 (1996) · Zbl 0849.54012
[12] Dube, T.; Ighedo, O., More on locales in which every open sublocale is z-embedded, Topology Appl, 201, 110-123 (2016) · Zbl 1350.06007 · doi:10.1016/j.topol.2015.12.030
[13] Dube, T.; Walters-Wayland, J., Coz-onto frame maps and some applications, Appl. Categ. Structures, 15, 119-133 (2007) · Zbl 1119.06007 · doi:10.1007/s10485-006-9022-y
[14] Engelking, R., General Topology, 6, Revised and completed ed.: Sigma Series in Pure Mathematics (1989), Heldermann Verlag: Heldermann Verlag, Berlin · Zbl 0684.54001
[15] Gierz, G.; Hofmann, K. H.; Keimel, K.; Lawson, J. D.; Mislove, M.; Scott, D. S., Continuous Lattices and Domains, 93, Encyclopedia of Mathematics and Its Applications (2003), Cambridge University Press: Cambridge University Press, Cambridge · Zbl 1088.06001
[16] Gillman, L.; Jerison, M., Rings of Continuous Functions (1960), D. Van Nostrand Co., Inc.: D. Van Nostrand Co., Inc., Princeton, N.J./Toronto/London/New York · Zbl 0093.30001
[17] Gutiérrez García, J.; Kubiak, T.; Picado, J., Localic real functions: a general setting, J. Pure Appl. Algebra, 213, 1064-1074 (2009) · Zbl 1187.06005 · doi:10.1016/j.jpaa.2008.11.004
[18] Gutiérrez García, J.; Kubiak, T.; de Prada Vicente, M. A., Insertion of lattice-valued and hedgehog valued functions, Topology Appl, 153, 1458-1475 (2006) · Zbl 1094.54009 · doi:10.1016/j.topol.2005.04.008
[19] Gutiérrez García, J.; Kubiak, T.; de Prada Vicente, M. A., Controlling disjointness with a hedgehog, Houst. J. Math, 35, 469-484 (2009) · Zbl 1176.54015
[20] Gutiérrez García, J.; Mozo Carollo, I.; Picado, J.; Walters-Wayland, J., Hedgehog frames and a cardinal extension of normality, J. Pure Appl. Algebra, 223, 2345-2370 (2019) · Zbl 1471.06005 · doi:10.1016/j.jpaa.2018.08.001
[21] Gutiérrez García, J.; Picado, J., On the parallel between normality and extremal disconnectedness, J. Pure Appl. Algebra, 218, 784-803 (2014) · Zbl 1296.06006 · doi:10.1016/j.jpaa.2013.10.002
[22] Gutiérrez García, J.; Picado, J.; Pultr, A., Notes on point-free real functions and sublocales, Categorical Methods in Algebra and Topology, 46, 167-200 (2014), University of Coimbra: University of Coimbra, Coimbra
[23] Isbell, J., Atomless parts of spaces, Math. Scand, 31, 5-32 (1972) · Zbl 0246.54028 · doi:10.7146/math.scand.a-11409
[24] Johnson, P. B., κ-Lindelöf locales and their spatial parts, Cahiers Topologie Géom. Différentielle Catég, 32, 297-313 (1991) · Zbl 0771.54018
[25] Johnstone, P. T., Stone Spaces, 3, Cambridge Studies in Advances Math (1982), Cambridge University Press: Cambridge University Press, Cambridge · Zbl 0499.54001
[26] Picado, J.; Pultr, A., Frames and Locales: topology without points, Frontiers in Mathematics, 28 (2012), Springer: Springer, Basel · Zbl 1231.06018 · doi:10.1007/978-3-0348-0154-6
[27] Picado, J.; Pultr, A., Localic maps constructed from open and closed parts, Categ. Gen. Algebraic Struct. Appl, 6, 21-35 (2017) · Zbl 1423.06043
[28] Picado, J.; Pultr, A., Separation in point-free topology (2021), Birkhäuser/Springer: Birkhäuser/Springer, Cham · Zbl 1486.54001
[29] Pultr, A., Remarks on metrizable locales, Proc. 12th Winter School on Abstract Analysis (Srn, 1984), Rend. Circ. Mat. Palermo, 6, Suppl., 247-258 (1984) · Zbl 0565.54001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.