×

Artwork 3D model database indexing and classification. (English) Zbl 1209.68479

Summary: This paper presents a framework for the indexing and retrieval of artwork 3D models, allowing global and partial model classification and retrieval. The first part of the paper deals with database classification based on global shape descriptors. A search engine “RETIN-3D”, using a SVM classifier coupled with an active learning strategy allows to retrieve categories of similar objects. In a second part, the classification is improved thanks to a local description of the models. A new framework for 3D surface segmentation is proposed. Shape descriptors are adapted to surface regions and kernels on descriptor bags are used to perform the database classification. Our system is designed for classifying and retrieving in ancient artwork 3D databases, and results from this application domain are presented and commented along the paper.

MSC:

68T10 Pattern recognition, speech recognition
68P20 Information storage and retrieval of data
65D17 Computer-aided design (modeling of curves and surfaces)

References:

[1] Funkhouser, T.; Min, P.; Kazhdan, M.; Chen, J.; Halderman, A.; Dobkin, D.; Jacobs, D., A search engine for 3D models, ACM Trans. Graphics, 22, 1, 83-105 (2003)
[2] Daras, P.; Zarpalas, D.; Tzovaras, D.; Strintzis, M. G., Efficient 3-D model search and retrieval using generalized 3-D radon transforms, IEEE Trans. Multimedia, 8, 1, 101-114 (2006)
[3] R.C. Veltkamp, F.B. ter Haar, SHREC2007: 3D shape retrieval contest, Technical Report, Utrecht University, The Netherlands, \( \langle\) http://www.cs.uu.nl/groups/MG/multimedia/publications/\( \rangle \); R.C. Veltkamp, F.B. ter Haar, SHREC2007: 3D shape retrieval contest, Technical Report, Utrecht University, The Netherlands, \( \langle\) http://www.cs.uu.nl/groups/MG/multimedia/publications/\( \rangle \)
[4] R. Ohbuchi, A. Yamamoto, J. Kobayashi, Learning semantic categories for 3D model retrieval, in: Proceedings of the ACM International Multimedia Conference, Proceedings of the International Workshop on Multimedia Information Retrieval (MIR) 2007, Augsburg, Bavaria, Germany, ACM Press, USA, 2007, pp. 31-40.; R. Ohbuchi, A. Yamamoto, J. Kobayashi, Learning semantic categories for 3D model retrieval, in: Proceedings of the ACM International Multimedia Conference, Proceedings of the International Workshop on Multimedia Information Retrieval (MIR) 2007, Augsburg, Bavaria, Germany, ACM Press, USA, 2007, pp. 31-40.
[5] D. Gorisse, M. Cord, M. Jordan, S. Philipp-Foliguet, F. Precioso, 3D content-based retrieval in artwork databases, in: Proceedings of the 3DTV-Conference, Kos Island, Greece, 7-9 May 2007.; D. Gorisse, M. Cord, M. Jordan, S. Philipp-Foliguet, F. Precioso, 3D content-based retrieval in artwork databases, in: Proceedings of the 3DTV-Conference, Kos Island, Greece, 7-9 May 2007.
[6] Horn, B. K.P., Extended gaussian images, Proc. IEEE, 72, 12, 1671-1686 (1984)
[7] Kang, S. B.; Ikeuchi, K., The complex EGI: a new representation for 3D pose determination, IEEE Trans. Pattern Anal. Mach. Intell., 16, 3, 249-258 (1994) · Zbl 0801.68172
[8] T. Zaharia, F. Prêteux, Shape-based retrieval of 3D mesh models, in: IEEE International Conference on Multimedia and Expo (ICME, 2002), Lausanne, Switzerland, 2002.; T. Zaharia, F. Prêteux, Shape-based retrieval of 3D mesh models, in: IEEE International Conference on Multimedia and Expo (ICME, 2002), Lausanne, Switzerland, 2002.
[9] Kazhdan, M.; Chazelle, B.; Dobkin, D.; Funkhouser, T.; Rusinkiewicz, S., A reflective symmetry descriptor for 3D models, Algorithmica, 38, 1, 201-225 (2003) · Zbl 1072.68095
[10] Osada, R.; Funkhouser, T.; Chazelle, B.; Dobkin, D., Shape distributions, ACM Trans. Graphics, 21, 4, 807-832 (2002) · Zbl 1331.68256
[11] E. Wahl, G. Hillenbrand, G. Hirzinger, Surflet-pair-relation histograms: a statistical 3D-shape representation for rapid classification, in: Proceedings of 3-D Digital Imaging and Modeling 3DIM 2003, October 2003, pp. 474-481.; E. Wahl, G. Hillenbrand, G. Hirzinger, Surflet-pair-relation histograms: a statistical 3D-shape representation for rapid classification, in: Proceedings of 3-D Digital Imaging and Modeling 3DIM 2003, October 2003, pp. 474-481.
[12] Ohbuchi, R.; Minamitani, T.; Takei, T., Shape-similarity search of 3D models by using enhanced shape functions, Int. J. Comput. Appl. Technol. IJCAT, 23, 3/4/5, 70-85 (2005)
[13] Papadakis, P.; Pratikakis, I.; Perantonis, S.; Theoharis, T., Efficient 3D shape matching and retrieval using a concrete radialized spherical projection representation, Pattern Recognition J., 40, 9, 2437-2452 (2007) · Zbl 1119.68185
[14] M. Ben-Chen, C. Gostman, Characterizing shape using conformal factors, in: Eurographics Workshop on 3D Object Retrieval, Crete, Greece, April 2008.; M. Ben-Chen, C. Gostman, Characterizing shape using conformal factors, in: Eurographics Workshop on 3D Object Retrieval, Crete, Greece, April 2008.
[15] T. Zaharia, F. Prêteux, 3D shape-based retrieval within the MPEG-7 framework, in: SPIE Conference 4304 on Nonlinear Image Processing and Pattern Analysis, vol. XII, San Jose, 2001, pp. 133-145.; T. Zaharia, F. Prêteux, 3D shape-based retrieval within the MPEG-7 framework, in: SPIE Conference 4304 on Nonlinear Image Processing and Pattern Analysis, vol. XII, San Jose, 2001, pp. 133-145.
[16] Tung, T.; Schmitt, F., The augmented multiresolution Reeb graph approach for content-based retrieval of 3D shapes, Int. J. Shape Model. (IJSM), 11, 1, 91-120 (2005) · Zbl 1122.68564
[17] Biasotti, S.; Giorgi, D.; Spagnuolo, M.; Falcidieno, B., Reeb graphs for shape analysis and applications, Theor. Comput. Sci., 392, 1-3, 5-22 (2008) · Zbl 1134.68064
[18] N. Iyer, Y. Kalyanaraman, K. Lou, S. Jayanti, K. Ramani, A reconfigurable, intelligent 3D engineering shape search system. Part I: shape representation, in: ASME DETC’03, 23rd Computers and Information in Engineering (CIE) Conference, Chicago, Illinois, 2003.; N. Iyer, Y. Kalyanaraman, K. Lou, S. Jayanti, K. Ramani, A reconfigurable, intelligent 3D engineering shape search system. Part I: shape representation, in: ASME DETC’03, 23rd Computers and Information in Engineering (CIE) Conference, Chicago, Illinois, 2003.
[19] T.F. Ansary, J.-P. Vandeborre, S. Mahmoudi , M. Daoudi, A Bayesian framework for 3D models retrieval based on characteristic views, in: International Symposium on 3D Data Processing, Visualization and Transmission, 3DPVT’04, Thessaloniki, Greece, IEEE, 6-9 Septebmer 2004.; T.F. Ansary, J.-P. Vandeborre, S. Mahmoudi , M. Daoudi, A Bayesian framework for 3D models retrieval based on characteristic views, in: International Symposium on 3D Data Processing, Visualization and Transmission, 3DPVT’04, Thessaloniki, Greece, IEEE, 6-9 Septebmer 2004.
[20] D.V. Vranic, 3D model retrieval, Ph.D. Thesis, University of Leipzig, 2004.; D.V. Vranic, 3D model retrieval, Ph.D. Thesis, University of Leipzig, 2004. · Zbl 1101.68832
[21] J.W.H. Tangelder, R.C. Veltkamp, A survey of content based 3D shape retrieval methods, in: Proceedings of Shape Modeling International, SMI’04, Genova, Italy, 2004, pp. 145-156.; J.W.H. Tangelder, R.C. Veltkamp, A survey of content based 3D shape retrieval methods, in: Proceedings of Shape Modeling International, SMI’04, Genova, Italy, 2004, pp. 145-156.
[22] Iyer, N.; Jayanti, S.; Lou, K.; Kalyanaraman, Y.; Ramani, K., Three-dimensional shape searching: state-of-the-art review and future trends, Comput. Aided Des., 37, 5, 509-530 (2005)
[23] Bustos, B.; Keim, D. A.; Saupe, D.; Schreck, T.; Vranic, D. V., Feature-based similarity search in 3D object databases, ACM Comput. Surv., 37, 4, 345-387 (2005)
[24] Tangelder, J. W.H.; Veltkamp, R. C., A survey of content based 3D shape retrieval methods, Multimedia Tools Appl., 39, 3, 441-471 (2008)
[25] Paquet, E.; Murching, A.; Naveen, T.; Tabatabai, A.; Rioux, M., Description of shape information for 2-D and 3-D objects, Image Commun. J., 16, 103-112 (2000)
[26] M. Mousa, R. Chaine, S. Akkouche, Frequency-based representation of 3D point-based surfaces using the spherical harmonics, in: ICCVG’06, International Conference on Computer Vision and Graphics, September 2006.; M. Mousa, R. Chaine, S. Akkouche, Frequency-based representation of 3D point-based surfaces using the spherical harmonics, in: ICCVG’06, International Conference on Computer Vision and Graphics, September 2006. · Zbl 1172.65341
[27] M. Mousa, R. Chaine, S. Akkouche, E. Galin, Efficient spherical harmonics representation of 3D objects, in: 15th Pacific Graphics, October 2007, pp. 248-257.; M. Mousa, R. Chaine, S. Akkouche, E. Galin, Efficient spherical harmonics representation of 3D objects, in: 15th Pacific Graphics, October 2007, pp. 248-257.
[28] Cord, M.; Gosselin, P.-H.; Philipp-Foliguet, S., Stochastic exploration and active learning for image retrieval, Image Vision Comput., 25, 14-23 (2007)
[29] Gal, R.; Cohen-Or, D., Salient geometric features for partial shape matching and similarity, ACM Trans. Graphics, 25, 1, 130-150 (2006)
[30] Shilane, P.; Funkhouser, T., Distinctive regions of 3D surfaces, ACM Trans. Graphics, 26, 2 (2007)
[31] T. Funkhouser, Ph. Shilane, Partial matching of 3D shapes with priority-driven search, in: Symposium on Geometry Processing, 2006.; T. Funkhouser, Ph. Shilane, Partial matching of 3D shapes with priority-driven search, in: Symposium on Geometry Processing, 2006.
[32] M.T. Suzuki, Y. Yaginuma, T. Yamada, Y. Shimizu, A 3D model retrieval based on combinations of partial shape descriptors, in: IEEE North American Fuzzy Information Processing Society Annual Conference (NAFIPS 2006), 2006.; M.T. Suzuki, Y. Yaginuma, T. Yamada, Y. Shimizu, A 3D model retrieval based on combinations of partial shape descriptors, in: IEEE North American Fuzzy Information Processing Society Annual Conference (NAFIPS 2006), 2006.
[33] N. Gelfand, N.J. Mitra, L.J. Guibas, H. Pottmann, Robust global registration, in: Eurographics Symposium on Geometry Processing, 2005, pp. 197-206.; N. Gelfand, N.J. Mitra, L.J. Guibas, H. Pottmann, Robust global registration, in: Eurographics Symposium on Geometry Processing, 2005, pp. 197-206.
[34] S. Rusinkiewicz, Estimating curvatures and their derivatives on triangle meshes, in: Symposium on 3D Data Processing, Visualization, and Transmission, 2004.; S. Rusinkiewicz, Estimating curvatures and their derivatives on triangle meshes, in: Symposium on 3D Data Processing, Visualization, and Transmission, 2004.
[35] Vincent, L.; Soille, P., Watersheds in digital spaces: an efficient algorithm based on immersion simulations, IEEE Trans. Pattern Anal. Mach. Intell., 13, 6, 583-598 (1991)
[36] Bertrand, G., On topological watersheds, J. Math. Imaging Vision, 22, 2-3, 217-230 (2005) · Zbl 1478.94011
[37] G. Bertrand, M. Couprie, J. Cousty, L. Najman, Lignes de partage des eaux dans les espaces discrets, in: L. Najman, H. Talbot (Eds.), Morphologie Mathématique 1: approches déterministes, Traité IC2, Hermès Science Publications, 2008, pp. 123-150 (Chapter 4).; G. Bertrand, M. Couprie, J. Cousty, L. Najman, Lignes de partage des eaux dans les espaces discrets, in: L. Najman, H. Talbot (Eds.), Morphologie Mathématique 1: approches déterministes, Traité IC2, Hermès Science Publications, 2008, pp. 123-150 (Chapter 4).
[38] Salembier, P.; Oliveras, A.; Garrido, L., Anti-extensive connected operators for image and sequence processing, IEEE Trans. Image Process., 7, 4, 555-570 (1998)
[39] Najman, L.; Couprie, M., Building the component tree in quasi-linear time, IEEE Trans. Image Process., 15, 11, 3531-3539 (2006)
[40] S. Lyu, Mercer kernels for object recognition with local features, in: IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), 2005.; S. Lyu, Mercer kernels for object recognition with local features, in: IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), 2005.
[41] P.-H. Gosselin, M. Cord, S. Philipp-Foliguet, Kernel on bags of fuzzy regions for fast object retrieval, in: IEEE International Conference on Image Processing (ICIP 07), 2007.; P.-H. Gosselin, M. Cord, S. Philipp-Foliguet, Kernel on bags of fuzzy regions for fast object retrieval, in: IEEE International Conference on Image Processing (ICIP 07), 2007.
[42] Mangan, A. P.; Whitaker, R. T., Partitioning 3D surface meshes using watershed segmentation, IEEE Trans. Visualization Comput. Graphics, 5, 4, 308-321 (1999)
[43] M. Attene, S. Katz, M. Mortara, G. Patane, M. Spagnuolo, A. Tal, Mesh segmentation—a comparative study, in: IEEE International Conference on Shape Modeling and Applications, SMI 2006, June 2006, pp. 14-25.; M. Attene, S. Katz, M. Mortara, G. Patane, M. Spagnuolo, A. Tal, Mesh segmentation—a comparative study, in: IEEE International Conference on Shape Modeling and Applications, SMI 2006, June 2006, pp. 14-25.
[44] Cousty, J.; Bertrand, G.; Najman, L.; Couprie, M., Watershed cuts: minimum spanning forests and the drop of water principle, IEEE Trans. Pattern Anal. Mach. Intell., 31, 8, 1362-1374 (2009)
[45] Cousty, J.; Bertrand, G.; Najman, L.; Couprie, M., Watershed cuts: thinnings shortest-path forests and topological watersheds, IEEE Trans. Pattern Anal. Mach. Intell., 32, 5, 925-939 (2010)
[46] Jagannathan, A.; Miller, E. L., Three-dimensional surface mesh segmentation using curvedness-based region growing approach, IEEE Trans. Pattern Anal. Mach. Intell., 29, 12, 2195-2204 (2007)
[47] D.L. Page, A.F. Koschan, M.A. Abidi. Perception-based 3D triangle mesh segmentation using fast marching watersheds, in: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, 2003, p. 27.; D.L. Page, A.F. Koschan, M.A. Abidi. Perception-based 3D triangle mesh segmentation using fast marching watersheds, in: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, 2003, p. 27.
[48] Y. Boykov, M.-P. Jolly, Interactive graph cuts for optimal boundary and region segmentation of objects in N-D images, in: ICCV, 2001, pp. 105-112.; Y. Boykov, M.-P. Jolly, Interactive graph cuts for optimal boundary and region segmentation of objects in N-D images, in: ICCV, 2001, pp. 105-112.
[49] Grady, L., Random walks for image segmentation, IEEE Trans. Pattern Anal. Mach. Intell., 28, 11, 1768-1783 (2006)
[50] C. Couprie, L. Grady, L. Najman, H. Talbot, Power watersheds: a new image segmentation framework extending graph cuts, random walker and optimal spanning forest, in: 12th International Conference on Computer Vision (ICCV’09), September 2009.; C. Couprie, L. Grady, L. Najman, H. Talbot, Power watersheds: a new image segmentation framework extending graph cuts, random walker and optimal spanning forest, in: 12th International Conference on Computer Vision (ICCV’09), September 2009.
[51] J. Cousty, G. Bertrand, M. Couprie, L. Najman. Collapses and watersheds in pseudomanifolds, in: P. Wiederhold, R.P. Barneva (Eds.), Combinatorial Image Analysis—IWCIA 2009, Lecture Notes in Computer Science, Springer, November 2009, pp. 397-410.; J. Cousty, G. Bertrand, M. Couprie, L. Najman. Collapses and watersheds in pseudomanifolds, in: P. Wiederhold, R.P. Barneva (Eds.), Combinatorial Image Analysis—IWCIA 2009, Lecture Notes in Computer Science, Springer, November 2009, pp. 397-410. · Zbl 1267.68285
[52] C. Berger, T. Géraud, R. Levillain, N. Widynski, A. Baillard, E. Bertin, Effective component tree computation with application to pattern recognition in astronomical imaging, in: Proceedings of the IEEE International Conference on Image Processing, San Antonio, Texas, USA, 16-19 September 2007.; C. Berger, T. Géraud, R. Levillain, N. Widynski, A. Baillard, E. Bertin, Effective component tree computation with application to pattern recognition in astronomical imaging, in: Proceedings of the IEEE International Conference on Image Processing, San Antonio, Texas, USA, 16-19 September 2007.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.