×

Formation of autapse connected to neuron and its biological function. (English) Zbl 1367.92025

Summary: Autapse is a specific synapse connected to the neuron via closed loop, and its functional adjusting is described by applying time-delayed feedback on the membrane potential of the neuron. This paper discussed the possible formation mechanism and biological function of autapse connection on neurons. We believe that the formation and growth of autapse connected to neuron can be associated with injury on axon and blocking in signal transmission; thus auxiliary loop is developed to form an autapse. When autapse is set up, it can propagate the signals and change the modes of electrical activities under self-adaption. Based on the cable neuron model, the injury on axon is generated by poisoning and blocking in ion channels (of sodium); thus the conductance of ion channels are changed to form injury-associated defects. Furthermore, auxiliary loop with time delay is designed to restore and enhance signal propagation by setting different time delays and feedback gains. The numerical studies confirmed that appropriate time delay and feedback gain in electric or chemical autapse can help signal (or wave generated by external forcing) propagation across the blocked area. As a result, formation of autapse could be dependent on the injury of neuron and further enhances the self-adaption to external stimuli.

MSC:

92C20 Neural biology
92C05 Biophysics

References:

[1] Hodgkin, A. L.; Huxley, A. F., A quantitative description of membrane current and its application to conduction and excitation in nerve, The Journal of Physiology, 117, 4, 500-544 (1952) · doi:10.1113/jphysiol.1952.sp004764
[2] Izhikevich, E. M., Which model to use for cortical spiking neurons?, IEEE Transactions on Neural Networks, 15, 5, 1063-1070 (2004) · doi:10.1109/TNN.2004.832719
[3] Hindmarsh, J. L.; Rose, R. M., A model of the nerve impulse using two first-order differential equations, Nature, 296, 5853, 162-164 (1982) · doi:10.1038/296162a0
[4] Herz, A. V. M.; Gollisch, T.; Machens, C. K.; Jaeger, D., Modeling single-neuron dynamics and computations: a balance of detail and abstraction, Science, 314, 80-85 (2006) · Zbl 1226.92007
[5] Chizhov, A. V.; Graham, L. J.; Turbin, A. A., Simulation of neural population dynamics with a refractory density approach and a conductance-based threshold neuron model, Neurocomputing, 70, 1-3, 252-262 (2006) · doi:10.1016/j.neucom.2006.02.004
[6] Gu, H. G.; Pan, B. B., A four-dimensional neuronal model to describe the complex nonlinear dynamics observed in the firing patterns of a sciatic nerve chronic constriction injury model, Nonlinear Dynamics, 81, 4, 2107-2126 (2015) · doi:10.1007/s11071-015-2129-7
[7] Ibarz, B.; Casado, J. M.; Sanjuán, M. A. F., Map-based models in neuronal dynamics, Physics Reports, 501, 1-2, 1-74 (2011) · doi:10.1016/j.physrep.2010.12.003
[8] Postnov, D. E.; Ryazanova, L. S.; Sosnovtseva, O. V., Functional modeling of neural-glial interaction, BioSystems, 89, 1-3, 84-91 (2007) · doi:10.1016/j.biosystems.2006.04.012
[9] Tang, J.; Luo, J.-M.; Ma, J., Information transmission in a neuron-astrocyte coupled model, PLOS ONE, 8, 11 (2013) · doi:10.1371/journal.pone.0080324
[10] Amiri, M.; Montaseri, G.; Bahrami, F., A phase plane analysis of neuron-astrocyte interactions, Neural Networks, 44, 157-165 (2013) · Zbl 1296.92094 · doi:10.1016/j.neunet.2013.03.018
[11] Linne, M.; Jalonen, T. O., Astrocyte-Neuron Interactions: from experimental research-based models to translational medicine, Computational Neuroscience. Computational Neuroscience, Progress in Molecular Biology and Translational Science, 123, 191-217 (2014), Elsevier · doi:10.1016/b978-0-12-397897-4.00005-x
[12] Volman, V.; Bazhenov, M.; Sejnowski, T. J., Computational models of neuron-astrocyte interaction in epilepsy, Frontiers in Computational Neuroscience, 6, article no. 58 (2012) · doi:10.3389/fncom.2012.00058
[13] Wang, R.; Tsuda, I.; Zhang, Z., A new work mechanism on neuronal activity, International Journal of Neural Systems, 25, 3 (2015) · doi:10.1142/s0129065714500373
[14] Wang, R.; Zhu, Y., Can the activities of the large scale cortical network be expressed by neural energy? A brief review, Cognitive Neurodynamics, 10, 1, 1-5 (2016) · doi:10.1007/s11571-015-9354-0
[15] Xu, Y. Y.; Ni, L.; Wang, R. B., A neural network model of spontaneous up and down transitions, Nonlinear Dynamics, 84, 1541-1551 (2016)
[16] Volman, V.; Perc, M.; Bazhenov, M., Gap junctions and epileptic seizures—two sides of the same coin?, PLoS ONE, 6, 5 (2011) · doi:10.1371/journal.pone.0020572
[17] Hille, B., Ion Channels of Excitable Membranes (2001), Sunderland, Mass, USA: Sinauer Associates, Sunderland, Mass, USA
[18] Schmid, G.; Goychuk, I.; Hänggi, P., Controlling the spiking activity in excitable membranes via poisoning, Physica, 344, 3-4, 665-670 (2004) · doi:10.1016/j.physa.2004.06.049
[19] Ozer, M.; Perc, M.; Uzuntarla, M., Controlling the spontaneous spiking regularity via channel blocking on Newman-Watts networks of Hodgkin-Huxley neurons, EPL, 86, 4 (2009) · doi:10.1209/0295-5075/86/40008
[20] Ma, J.; Zhang, A.; Tang, J.; Jin, W., Collective behaviors of spiral waves in the networks of hodgkin-huxley neurons in presence of channel noise, Journal of Biological Systems, 18, 1, 243-259 (2010) · Zbl 1342.92047 · doi:10.1142/s0218339010003275
[21] Ma, J.; Wu, Y.; Ying, H.; Jia, Y., Channel noise-induced phase transition of spiral wave in networks of Hodgkin-Huxley neurons, Chinese Science Bulletin, 56, 2, 151-157 (2011) · doi:10.1007/s11434-010-4281-2
[22] Huang, L.; Ma, J.; Tang, J.; Li, F., Transition of ordered waves in neuronal network induced by diffusive poisoning of ion channels, Journal of Biological Systems, 21, 1 (2013) · Zbl 1285.92005 · doi:10.1142/s0218339013500022
[23] Sun, X.; Shi, X., Effects of channel blocks on the spiking regularity in clustered neuronal networks, Science China Technological Sciences, 57, 5, 879-884 (2014) · doi:10.1007/s11431-014-5529-x
[24] Lv, M.; Ma, J., Multiple modes of electrical activities in a new neuron model under electromagnetic radiation, Neurocomputing, 205, 375-381 (2016) · doi:10.1016/j.neucom.2016.05.004
[25] Lv, M.; Wang, C.; Ren, G.; Ma, J.; Song, X., Model of electrical activity in a neuron under magnetic flow effect, Nonlinear Dynamics, 85, 3, 1479-1490 (2016) · doi:10.1007/s11071-016-2773-6
[26] Ma, J.; Tang, J., A review for dynamics of collective behaviors of network of neurons, Science China Technological Sciences, 58, 12, 2038-2045 (2015) · doi:10.1007/s11431-015-5961-6
[27] Ma, J.; Qin, H.; Song, X.; Chu, R., Pattern selection in neuronal network driven by electric autapses with diversity in time delays, International Journal of Modern Physics B, 29, 1 (2015) · doi:10.1142/s0217979214502397
[28] Qin, H. X.; Wu, Y.; Wang, C. N.; Ma, J., Emitting waves from defects in network with autapses, Communications in Nonlinear Science and Numerical Simulation, 23, 1-3, 164-174 (2015) · Zbl 1352.92035 · doi:10.1016/j.cnsns.2014.11.008
[29] Ozer, M.; Uzuntarla, M.; Kayikcioglu, T.; Graham, L. J., Collective temporal coherence for subthreshold signal encoding on a stochastic small-world Hodgkin-Huxley neuronal network, Physics Letters A, 372, 43, 6498-6503 (2008) · Zbl 1225.92009 · doi:10.1016/j.physleta.2008.09.007
[30] Uzun, R.; Ozer, M.; Perc, M., Can scale-freeness offset delayed signal detection in neuronal networks?, EPL, 105, 6 (2014) · doi:10.1209/0295-5075/105/60002
[31] Bekkers, J. M., Synaptic transmission: functional autapses in the cortex, Current Biology, 13, 11, R433-R435 (2003) · doi:10.1016/s0960-9822(03)00363-4
[32] Saada, R.; Miller, N.; Hurwitz, I.; Susswein, A. J., Autaptic excitation elicits persistent activity and a plateau potential in a neuron of known behavioral function, Current Biology, 19, 6, 479-484 (2009) · doi:10.1016/j.cub.2009.01.060
[33] Wang, L.; Zeng, Y., Control of bursting behavior in neurons by autaptic modulation, Neurological Sciences, 34, 11, 1977-1984 (2013) · doi:10.1007/s10072-013-1429-2
[34] Suga, K., Isoproterenol facilitates GABAergic autapses in fast-spiking cells of rat insular cortex, Journal of Oral Science, 56, 1, 41-47 (2014) · doi:10.2334/josnusd.56.41
[35] Guo, D.; Chen, M.; Perc, M.; Wu, S.; Xia, C.; Zhang, Y.; Xu, P.; Xia, Y.; Yao, D., Firing regulation of fast-spiking interneurons by autaptic inhibition, EPL, 114, 3 (2016) · doi:10.1209/0295-5075/114/30001
[36] Karabelas, A. B.; Purrura, D. P., Evidence for autapses in the substantia nigra, Brain Research, 200, 2, 467-473 (1980) · doi:10.1016/0006-8993(80)90935-X
[37] Goldman, M. S., Memory without Feedback in a Neural Network, Neuron, 61, 4, 621-634 (2009) · doi:10.1016/j.neuron.2008.12.012
[38] Bekkers, J. M.; Stevens, C. F., Excitatory and inhibitory autaptic currents in isolated hippocampal neurons maintained in cell culture, Proceedings of the National Academy of Sciences, 88, 17, 7834-7838 (1991) · doi:10.1073/pnas.88.17.7834
[39] Shi, W.-X.; Rayport, S., GABA synapses formed in vitro by local axon collaterals of nucleus accumbens neurons, The Journal of Neuroscience, 14, 7, 4548-4560 (1994)
[40] Van Der Loos, H.; Glaser, E. M., Autapses in neocortex cerebri: synapses between a pyramidal cell’s axon and its own dendrites, Brain Research, 48, 355-360 (1972) · doi:10.1016/0006-8993(72)90189-8
[41] Song, X. L.; Wang, C. N.; Ma, J.; Tang, J., Transition of electric activity of neurons induced by chemical and electric autapses, Science China Technological Sciences, 58, 6, 1007-1014 (2015) · doi:10.1007/s11431-015-5826-z
[42] Yilmaz, E.; Ozer, M., Delayed feedback and detection of weak periodic signals in a stochastic Hodgkin-Huxley neuron, Physica A: Statistical Mechanics and Its Applications, 421, 455-462 (2015) · doi:10.1016/j.physa.2014.10.096
[43] Yilmaz, E.; Baysal, V.; Perc, M.; Ozer, M., Enhancement of pacemaker induced stochastic resonance by an autapse in a scale-free neuronal network, Science China Technological Sciences, 59, 3, 364-370 (2016) · doi:10.1007/s11431-015-5984-z
[44] Yilmaz, E.; Baysal, V.; Ozer, M.; Perc, M., Autaptic pacemaker mediated propagation of weak rhythmic activity across small-world neuronal networks, Physica A: Statistical Mechanics and its Applications, 444, 538-546 (2016) · Zbl 1400.92028 · doi:10.1016/j.physa.2015.10.054
[45] Wang, H.-T.; Chen, Y., Firing dynamics of an autaptic neuron, Chinese Physics B, 24, 12 (2015) · doi:10.1088/1674-1056/24/12/128709
[46] Wang, Q.; Gong, Y. B.; Wu, Y. N., Autaptic self-feedback-induced synchronization transitions in Newman-Watts neuronal network with time delays, The European Physical Journal B, 88, article 103 (2015) · doi:10.1140/epjb/e2015-60164-8
[47] Wu, Y.; Gong, Y.; Wang, Q., Autaptic activity-induced synchronization transitions in Newman-Watts network of Hodgkin-Huxley neurons, Chaos, 25, 4 (2015) · Zbl 1374.92018 · doi:10.1063/1.4918997
[48] Qin, H.; Ma, J.; Wang, C.; Chu, R., Autapse-induced target wave, spiral wave in regular network of neurons, Science China: Physics, Mechanics and Astronomy, 57, 10, 1918-1926 (2014) · doi:10.1007/s11433-014-5466-5
[49] Ma, J.; Song, X.; Jin, W.; Wang, C., Autapse-induced synchronization in a coupled neuronal network, Chaos, Solitons and Fractals, 80, 31-38 (2015) · Zbl 1354.92004 · doi:10.1016/j.chaos.2015.02.005
[50] Ma, J.; Song, X.; Tang, J.; Wang, C., Wave emitting and propagation induced by autapse in a forward feedback neuronal network, Neurocomputing, 167, 378-389 (2015) · doi:10.1016/j.neucom.2015.04.056
[51] Fan, Y.; Xu, F.; Huang, G.; Lu, T. J.; Xing, W., Single neuron capture and axonal development in three-dimensional microscale hydrogels, Lab on a Chip, 12, 22, 4724-4731 (2012) · doi:10.1039/c2lc40312a
[52] Herrmann, C. S.; Klaus, A., Autapse turns neuron into oscillator, International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 14, 2, 623-633 (2004) · Zbl 1064.92009 · doi:10.1142/S0218127404009338
[53] Ren, G. D.; Wu, G.; Ma, J.; Chen, Y., Simulation of electric activity of neuron by setting up a reliable neuronal circuit driven by electric autapse, Acta Physica Sinica, 64, 5 (2015) · doi:10.7498/aps.64.058702
[54] Li, Y.; Schmid, G.; Hänggi, P.; Schimansky-Geier, L., Spontaneous spiking in an autaptic Hodgkin-Huxley setup, Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 82, 6 (2010) · doi:10.1103/PhysRevE.82.061907
[55] Wang, H. T.; Wang, L. F.; Chen, Y. L., Effect of autaptic activity on the response of a Hodgkin-Huxley neuron, Chaos, 24 (2014)
[56] Schmid, G.; Goychuk, I.; Hänggi, P., Effect of channel block on the spiking activity of excitable membranes in a stochastic Hodgkin-Huxley model, Physical Biology, 1, 2, 61-66 (2004) · doi:10.1088/1478-3967/1/2/002
[57] Schmid, G.; Goychuk, I.; Hänggi, P., Stochastic resonance as a collective property of ion channel assemblies, Europhysics Letters, 56, 1, 22-28 (2001) · doi:10.1209/epl/i2001-00482-6
[58] Jung, P.; Shuai, J. W., Optimal sizes of ion channel clusters, Europhysics Letters, 56, 1, 29-35 (2001) · doi:10.1209/epl/i2001-00483-y
[59] Song, X.; Wang, C.; Ma, J.; Ren, G., Collapse of ordered spatial pattern in neuronal network, Physica A, 451, 95-112 (2016) · Zbl 1400.92025 · doi:10.1016/j.physa.2016.01.049
[60] Ma, J.; Xu, Y.; Ren, G.; Wang, C., Prediction for breakup of spiral wave in a regular neuronal network, Nonlinear Dynamics, 84, 2, 497-509 (2016) · doi:10.1007/s11071-015-2502-6
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.