×

Quantum field theories on algebraic curves. I. Additive bosons. (English. Russian original) Zbl 1270.81128

Izv. Math. 77, No. 2, 378-406 (2013); translation from Izv. Ross. Akad. Nauk, Ser. Mat. 77, No. 2, 165-196 (2013).
In 1988 Witten used current algebras to develop the fundaments of quantum field theory for free fermions living on an algebraic curve. The global symmetries are then given by the rational maps of the curve \(X\) to a finite-dimensional semi-simple Lie algebra over an algebraically closed field \(k\). In a previous paper, titled “Quantum field theories on an algebraic curve” [Lett. Math. Phys. 52, No. 1, 79–91 (2000; Zbl 1024.81016)], the author provided a solution to the problem of determining the expectation value functional for scalar fields with an abelian Lie algebra. Although abelian integrals have been studied before, so far the integral calculus on curves has not been fully developed.
In the present paper Takhtajan tries to fill this gap when the field \(k\) has characteristic zero. He gives an explicit construction of quantum field theories of (additive) bosons on an algebraic curve. The paper is organized as follows. Section 1 provides a long survey of the history of the subject. In Section 2 the author recalls the necessary basic facts from the theory of algebraic curves. This material is standard. In Section 3 he recalls the details of the differential calculus on an algebraic curve and develops a corresponding integral calculus. It is now assumed that the field \(k\) has characteristic 0 and the algebraic curve has genus \(g\geq 1\). In Section 4 local quantum field theories of additive charged bosons are formulated. Finally, in Section 5 global versions of the local QFTs – as studied in Section 4 – are constructed. The paper provides a stimulating account of the mathematical principles and techniques using algebraic curves and some concepts from quantum field theory though the aim is certainly not to suggest possible applications in particle physics.

MSC:

81T10 Model quantum field theories
81R10 Infinite-dimensional groups and algebras motivated by physics, including Virasoro, Kac-Moody, \(W\)-algebras and other current algebras and their representations
14H81 Relationships between algebraic curves and physics
81T20 Quantum field theory on curved space or space-time backgrounds
81R15 Operator algebra methods applied to problems in quantum theory

Citations:

Zbl 1024.81016

References:

[1] Ж.-П. Серр, Алгебраические группы и поля классов, Мир, М., 1968 · Zbl 0174.24301
[2] J.-P. Serre, Groupes alge\'briques et corps de classes, Hermann & Cie, Paris, 1959 · Zbl 0097.35604
[3] J. Tate, “Residues of differentials on curves”, Ann. Sci. Ećole Norm. Sup. (4), 1:1 (1968), 149 – 159 · Zbl 0159.22702
[4] E. Arbarello, C. De Concini, V. G. Kac, “The infinite wedge representation and the reciprocity law for algebraic curves”, Theta functions – Bowdoin 1987, Part 1 (Brunswick, ME, 1987), Proc. Sympos. Pure Math., 49, Amer. Math. Soc., Providence, RI, 1989, 171 – 190 · Zbl 0699.22028
[5] D. Kazhdan, Free fermions on an algebraic curve (Lecture at AMS Summer Institute Theta functions), 1987
[6] E. Witten, “Free fermions on an algebraic curve”, The mathematical heritage of Hermann Weyl, Proc. Sympos. Pure Math., 48, Amer. Math. Soc., Providence, RI, 1988, 329 – 344 · Zbl 0658.14013
[7] E. Witten, “Quantum field theory, Grassmannians, and algebraic curves”, Comm. Math. Phys., 113:4 (1988), 529 – 600 · Zbl 0636.22012 · doi:10.1007/BF01223238
[8] L. A. Takhtajan, “Quantum field theories on an algebraic curve”, Lett. Math. Phys., 52:1 (2000), 79 – 91 · Zbl 1024.81016 · doi:10.1023/A:1007605903393
[9] K. Iwasawa, Algebraic functions, Transl. Math. Monogr., 118, Amer. Math. Soc., Providence, RI, 1993 · Zbl 0790.14017
[10] И. Кра, Автоморфные формы и клейновы группы, Мир, М., 1975
[11] I. Kra, Automorphic forms and Kleinian groups, Benjamin, Reading, MA, 1972 · Zbl 0253.30015
[12] N. Kawamoto, Y. Namikawa, A. Tsuchiya, Y. Yamada, “Geometric realization of conformal field theory on Riemann surfaces”, Comm. Math. Phys., 116:2 (1988), 247 – 308 · Zbl 0648.35080 · doi:10.1007/BF01225258
[13] К. Шевалле, Введение в теорию алгебраических функций от одной переменной, Физматгиз, М., 1959 · Zbl 0087.03102
[14] C. Chevalley, Introduction to the theory of algebraic functions of one variable, Math. Surveys, 6, Amer. Math. Soc., New York, 1951 · Zbl 0045.32301
[15] M. Eichler, Introduction to the theory of algebraic numbers and functions, Academic Press, New York, 1966 · Zbl 0152.19502
[16] В. Кац, Бесконечномерные алгебры Ли, Мир, М., 1993 · Zbl 0925.17021
[17] V. G. Kac, Infinite dimensional Lie algebras, Cambridge Univ. Press, Cambridge, 1990 · Zbl 0716.17022
[18] E. Frenkel, D. Ben-Zvi, Vertex algebras and algebraic curves, Math. Surveys Monogr., 88, Amer. Math. Soc., Providence, RI, 2004 · Zbl 1106.17035
[19] С. Лефшец, Алгебраическая топология, ИЛ, М., 1949
[20] S. Lefschetz, Algebraic topology, Amer. Math. Soc., New York, 1942 · Zbl 0061.39302
[21] Ф. Гриффитс, Дж. Харрис, Принципы алгебраической геометрии, Мир, М., 1982 · Zbl 0531.14002
[22] Ph. Griffiths, J. Harris, Principles of algebraic geometry, Wiley, New York, 1978 · Zbl 0408.14001
[23] A. Weil, “Sur les fonctions alge\'briques a\? corps de constantes fini”, C. R. Acad. Sci. Paris, 210 (1940), 592 – 594 · Zbl 0023.29401
[24] С. О. Горчинский, “Бирасширение Пуанкаре и идели на алгебраической кривой”, Матем. сб., 197:1 (2006), 25 – 38 · Zbl 1134.14304 · doi:10.1070/SM2006v197n01ABEH003744
[25] S. O. Gorchinskii, “Poincare\' biextension and ide\?les on an algebraic curve”, Sb. Math., 197:1 (2006), 23 – 36 · Zbl 1134.14304 · doi:10.1070/SM2006v197n01ABEH003744
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.