×

Infinite-dimensional flag manifolds in integrable systems. (English) Zbl 0838.22008

The authors present several instances where infinite-dimensional flag varieties and their holomorphic line bundles play a role in integrable systems. They describe the correspondence between flag varieties and Darboux transformations for the KP hierarchy and the \(n\)th KdV hierarchy, construct solutions of the \(n\)th MKdV hierarchy from the space of periodic flags, give a geometric interpretation of the Miura transform, and prove how the group extension connected with these line bundles shows up at integrable deformations of linear systems on \(P^1(C)\).

MSC:

22E65 Infinite-dimensional Lie groups and their Lie algebras: general properties
14M15 Grassmannians, Schubert varieties, flag manifolds
35Q58 Other completely integrable PDE (MSC2000)
43A80 Analysis on other specific Lie groups
17B65 Infinite-dimensional Lie (super)algebras
Full Text: DOI

References:

[1] Adler, M., Haine, L., and van Moerbeke, P.: Limit matrices for the Toda flow and periodic flags for loop groups, Preprint. · Zbl 0788.58028
[2] Baston, R. J. and Eastwood, M. G.:The Penrose Transform, Clarendon Press, Oxford, 1989. · Zbl 0726.58004
[3] Carey, A. L. and Ruysenaars, S. N. M.: On fermion gauge groups, current algebras and KacMoody algebras,Acta Appl. Math,10 (1987), 1-86. · Zbl 0644.22012 · doi:10.1007/BF00046582
[4] Ehlers, F. and Knörrer, H.: An algebro-geometric interpretation of the Bäcklund transformation for the Korteweg-de Vries equation,Comment. Math. Helv. 57 (1982), 1-10. · Zbl 0516.35071 · doi:10.1007/BF02565842
[5] Fukuma, M., Kawai, H., and Nakayama, R.: Infinite-dimensional Grassmannian structure of two-dimensional quantum gravity,Comm. Math. Phys. 143 (1992), 371-403. · Zbl 0757.35076 · doi:10.1007/BF02099014
[6] Haine, L. and Horozov, E.: Toda orbits of Laguerre polynomials and representations of the Virasoro algebra,Bull. Sei. Math., 2e Serie 117 (1993), 485-518. · Zbl 0831.17011
[7] Helminck, G.: A geometric construction of solutions of the Toda lattice hierarchy, inLecture Notes in Phys. 424, Springer-Verlag, New York, pp. 91-101. · Zbl 0788.35126
[8] Helminck, G. F. and Helminck, A. G.: The structure of Hubert flag varieties,Publ. RIMS, Kyoto Univ. 30(3) (1994), 410-441. · Zbl 0836.22029 · doi:10.2977/prims/1195165905
[9] Hazewinkel, M. and Martin, C. F.: Representations of the symmetric group the specialization order, Systems and Grassmann manifolds,Enseign. Math. 29 (1983), 53-87. · Zbl 0536.20009
[10] Helminck, G. F. and Post, G. F.: The geometry of differential difference equations,Indag. Math. N.S. 5(4)411-438. · Zbl 0816.35123
[11] Jimbo, M., Muire, T., and Ueno, K.: Monodromy preserving deformations of linear ordinary differential equations with rational coefficients 1. General theory and ?-functions,Physics 2D 402 (1981), 306-352.
[12] Kawamoto, N., Narukawa, Y., Tsychiya, A., and Yamada, Y.: Geometric Realization of Conformal Field Theory on Riemann Surfaces,Comm. Math. Phys. 116 (1988), 247-308. · Zbl 0648.35080 · doi:10.1007/BF01225258
[13] Kac, V. G. and Peterson, D. H.: Infinite flag varieties and conjugacy theorems,Proc. Nat. Acad. Sci. USA 18 (1983), 1778-1782. · Zbl 0512.17008
[14] Kupershmidt, B. A. and Wilson, G.: Modifying Lax equations and the second Hamiltonian structure,Invent. Math. 62 (1981), 403-436. · Zbl 0464.35024 · doi:10.1007/BF01394252
[15] Malgrange, B.:Sur les déformations isomonodromiques 1. Singularités réguliers, Progress in Mathematics, Vol. 37, Birkhäuser, Boston, 1983.
[16] Mickelsson, J.:Current Algebras and Groups, Plenum Monographs in Nonlinear Physics, Plenum Press, New York, 1989. · Zbl 0726.22015
[17] Palmer, J.: Determinants of Cauchy-Riemann operators as?-functions, Acta Appl. Math. 18(3) (1990), 199-223. · Zbl 0708.35063 · doi:10.1007/BF00049126
[18] Palmer, J.: Tau functions for the Dirac operator in the Euclidean plane,Pacific J. Math. 160(2) (1993), 259-342. · Zbl 0777.35068
[19] Palmer, J., Beatty, M., and Tracy, C. A.: Tau functions for the Dirac operator on the Poincaré disk, Preprint. · Zbl 0812.35112
[20] Pressley, A. and Segal, G.:Loop Groups, Clarendon Press, Oxford 1986. · Zbl 0618.22011
[21] Segal, G. and Wilson, G.: Loop groups and equations of KdV-type,Publ. Math. IHES 61 (1985), 5-65. · Zbl 0592.35112
[22] Ward, R. S. and Wells, R. O., Jr.:Twistor Geometry and Field Theory, Cambridge Monographs on Mathematical Physics, University Press, Cambridge, 1991. · Zbl 0729.53068
[23] Wilson, G.: Commuting flows and conservation laws for Lax equations,Math. Proc. Cambridge Philos. Soc. 86 (1979), 131-143. · Zbl 0427.35024 · doi:10.1017/S0305004100000700
[24] Wilson, G.: Habillage et fonctions?, C.R. Acad. Sci, Paris, Sér. I. Math. 299 (1984), 587-590. · Zbl 0564.35086
[25] Wilson, G.: Loop groups and equations of KdV type II, Flag manifolds and the modified equations, Preprint Math. Inst, Oxford, 1983.
[26] Witten, W.: Quantum field theory, Grassmannian and algebraic curves,Comm. Math. Phys. 113 (1988), 539-600. · Zbl 0636.22012 · doi:10.1007/BF01223238
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.