×

Restoration of supersymmetry in two-dimensional SYM with sixteen supercharges on the lattice. (English) Zbl 1388.81149

Summary: We perform lattice simulations of two-dimensional supersymmetric Yang-Mills theory with sixteen supercharges with a lattice action which has two exact supercharges (Sugino lattice action). According to the gauge/gravity duality, the theory at finite temperature is expected to be well described by the corresponding black 1-branes, at low temperature in the large \(N\) limit. We aim to confirm the duality conjecture by comparing the lattice results with the theoretical predictions obtained in the gravity side. In this article, at the beginning of this study, we examine the supersymmetric Ward-Takahashi identity to test whether the lattice action reproduces the correct continuum theory. Numerical results of the SUSY WTI strongly suggest us that any cut-off effects, which break supersymmetry, disappear in the continuum limit. In addition, we study the issue of degenerate vacua and find that the admissiblilty condition or any other constraints of the link fields which guarantee the unique vacuum are not always needed.

MSC:

81Q60 Supersymmetry and quantum mechanics
83C27 Lattice gravity, Regge calculus and other discrete methods in general relativity and gravitational theory

Software:

GitHub; AlgRemez; LAPACK

References:

[1] J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys.38 (1999) 1113 [hep-th/9711200] [INSPIRE]. · Zbl 0969.81047 · doi:10.1023/A:1026654312961
[2] I.R. Klebanov, TASI lectures: introduction to the AdS/CFT correspondence, hep-th/0009139 [INSPIRE]. · Zbl 1131.81315
[3] J.M. Maldacena, TASI 2003 lectures on AdS/CFT, hep-th/0309246 [INSPIRE]. · Zbl 1084.81061
[4] J. Polchinski, Introduction to gauge/gravity duality, arXiv:1010.6134 [INSPIRE]. · Zbl 1183.83041
[5] T. Gherghetta, TASI lectures on a holographic view of beyond the standard model physics, arXiv:1008.2570 [INSPIRE]. · Zbl 1242.81140
[6] S.W. Hawking, Breakdown of predictability in gravitational collapse, Phys. Rev.D 14 (1976) 2460 [INSPIRE].
[7] S.W. Hawking, The unpredictability of quantum gravity, Commun. Math. Phys.87 (1982) 395 [INSPIRE]. · Zbl 0506.76138 · doi:10.1007/BF01206031
[8] T. Sakai and S. Sugimoto, Low energy hadron physics in holographic QCD, Prog. Theor. Phys.113 (2005) 843 [hep-th/0412141] [INSPIRE]. · Zbl 1076.81623 · doi:10.1143/PTP.113.843
[9] C.P. Herzog, Lectures on holographic superfluidity and superconductivity, J. Phys.A 42 (2009) 343001 [arXiv:0904.1975] [INSPIRE]. · Zbl 1180.82218
[10] V. Pestun, Localization of gauge theory on a four-sphere and supersymmetric Wilson loops, Commun. Math. Phys.313 (2012) 71 [arXiv:0712.2824] [INSPIRE]. · Zbl 1257.81056 · doi:10.1007/s00220-012-1485-0
[11] J.K. Erickson, G.W. Semenoff and K. Zarembo, Wilson loops in N = 4 supersymmetric Yang-Mills theory, Nucl. Phys.B 582 (2000) 155 [hep-th/0003055] [INSPIRE]. · Zbl 0984.81154 · doi:10.1016/S0550-3213(00)00300-X
[12] N. Drukker, 1/4 BPS circular loops, unstable world-sheet instantons and the matrix model, JHEP09 (2006) 004 [hep-th/0605151] [INSPIRE]. · doi:10.1088/1126-6708/2006/09/004
[13] D.B. Kaplan, E. Katz and M. Ünsal, Supersymmetry on a spatial lattice, JHEP05 (2003) 037 [hep-lat/0206019] [INSPIRE]. · doi:10.1088/1126-6708/2003/05/037
[14] A.G. Cohen, D.B. Kaplan, E. Katz and M. Ünsal, Supersymmetry on a Euclidean space-time lattice. 1. A target theory with four supercharges, JHEP08 (2003) 024 [hep-lat/0302017] [INSPIRE]. · doi:10.1088/1126-6708/2003/08/024
[15] A.G. Cohen, D.B. Kaplan, E. Katz and M. Ünsal, Supersymmetry on a Euclidean space-time lattice. 2. Target theories with eight supercharges, JHEP12 (2003) 031 [hep-lat/0307012] [INSPIRE]. · doi:10.1088/1126-6708/2003/12/031
[16] D.B. Kaplan and M. Ünsal, A Euclidean lattice construction of supersymmetric Yang-Mills theories with sixteen supercharges, JHEP09 (2005) 042 [hep-lat/0503039] [INSPIRE].
[17] M.G. Endres and D.B. Kaplan, Lattice formulation of (2, 2) supersymmetric gauge theories with matter fields, JHEP10 (2006) 076 [hep-lat/0604012] [INSPIRE]. · doi:10.1088/1126-6708/2006/10/076
[18] F. Sugino, A lattice formulation of super Yang-Mills theories with exact supersymmetry, JHEP01 (2004) 015 [hep-lat/0311021] [INSPIRE]. · Zbl 1243.81125 · doi:10.1088/1126-6708/2004/01/015
[19] F. Sugino, Super Yang-Mills theories on the two-dimensional lattice with exact supersymmetry, JHEP03 (2004) 067 [hep-lat/0401017] [INSPIRE]. · doi:10.1088/1126-6708/2004/03/067
[20] F. Sugino, Various super Yang-Mills theories with exact supersymmetry on the lattice, JHEP01 (2005) 016 [hep-lat/0410035] [INSPIRE].
[21] F. Sugino, Two-dimensional compact N = (2,2) lattice super Yang-Mills theory with exact supersymmetry, Phys. Lett.B 635 (2006) 218 [hep-lat/0601024] [INSPIRE]. · Zbl 1247.81500 · doi:10.1016/j.physletb.2006.02.064
[22] F. Sugino, Lattice formulation of two-dimensional N = (2,2) SQCD with exact supersymmetry, Nucl. Phys.B 808 (2009) 292 [arXiv:0807.2683] [INSPIRE]. · Zbl 1192.81348 · doi:10.1016/j.nuclphysb.2008.09.035
[23] Y. Kikukawa and F. Sugino, Ginsparg-Wilson formulation of 2D N = (2, 2) SQCD with exact lattice supersymmetry, Nucl. Phys.B 819 (2009) 76 [arXiv:0811.0916] [INSPIRE]. · Zbl 1194.81265 · doi:10.1016/j.nuclphysb.2009.04.007
[24] D. Kadoh, F. Sugino and H. Suzuki, Lattice formulation of 2D N = (2,2) SQCD based on the B model twist, Nucl. Phys.B 820 (2009) 99 [arXiv:0903.5398] [INSPIRE]. · Zbl 1194.81264 · doi:10.1016/j.nuclphysb.2009.05.012
[25] S. Matsuura and F. Sugino, Lattice formulation for 2D N = (2, 2), (4, 4) super Yang-Mills theories without admissibility conditions, JHEP04 (2014) 088 [arXiv:1402.0952] [INSPIRE]. · doi:10.1007/JHEP04(2014)088
[26] S. Catterall, A geometrical approach to N = 2 super Yang-Mills theory on the two dimensional lattice, JHEP11 (2004) 006 [hep-lat/0410052] [INSPIRE]. · doi:10.1088/1126-6708/2004/11/006
[27] S. Catterall, Lattice formulation of N = 4 super Yang-Mills theory, JHEP06 (2005) 027 [hep-lat/0503036] [INSPIRE]. · doi:10.1088/1126-6708/2005/06/027
[28] A. D’Adda, I. Kanamori, N. Kawamoto and K. Nagata, Exact extended supersymmetry on a lattice: twisted N = 2 super Yang-Mills in two dimensions, Phys. Lett.B 633 (2006) 645 [hep-lat/0507029] [INSPIRE]. · Zbl 1247.81464 · doi:10.1016/j.physletb.2005.12.034
[29] A. D’Adda, I. Kanamori, N. Kawamoto and K. Nagata, Exact extended supersymmetry on a lattice: twisted N = 4 super Yang-Mills in three dimensions, Nucl. Phys.B 798 (2008) 168 [arXiv:0707.3533] [INSPIRE]. · Zbl 1234.81103 · doi:10.1016/j.nuclphysb.2008.01.026
[30] S. Matsuura, Two-dimensional N = (2, 2) supersymmetric lattice gauge theory with matter fields in the fundamental representation, JHEP07 (2008) 127 [arXiv:0805.4491] [INSPIRE]. · doi:10.1088/1126-6708/2008/07/127
[31] A. Joseph, Lattice formulation of three-dimensional N = 4 gauge theory with fundamental matter fields, JHEP09 (2013) 046 [arXiv:1307.3281] [INSPIRE]. · doi:10.1007/JHEP09(2013)046
[32] A. Joseph, Supersymmetric quiver gauge theories on the lattice, JHEP01 (2014) 093 [arXiv:1311.5111] [INSPIRE]. · doi:10.1007/JHEP01(2014)093
[33] A. Joseph, Two-dimensional N = (2, 2) lattice gauge theories with matter in higher representations, JHEP07 (2014) 067 [arXiv:1403.4390] [INSPIRE]. · doi:10.1007/JHEP07(2014)067
[34] N. Itzhaki, J.M. Maldacena, J. Sonnenschein and S. Yankielowicz, Supergravity and the large-N limit of theories with sixteen supercharges, Phys. Rev.D 58 (1998) 046004 [hep-th/9802042] [INSPIRE].
[35] K.N. Anagnostopoulos, M. Hanada, J. Nishimura and S. Takeuchi, Monte Carlo studies of supersymmetric matrix quantum mechanics with sixteen supercharges at finite temperature, Phys. Rev. Lett.100 (2008) 021601 [arXiv:0707.4454] [INSPIRE]. · doi:10.1103/PhysRevLett.100.021601
[36] M. Hanada, A. Miwa, J. Nishimura and S. Takeuchi, Schwarzschild radius from Monte Carlo calculation of the Wilson loop in supersymmetric matrix quantum mechanics, Phys. Rev. Lett.102 (2009) 181602 [arXiv:0811.2081] [INSPIRE]. · doi:10.1103/PhysRevLett.102.181602
[37] M. Hanada, Y. Hyakutake, J. Nishimura and S. Takeuchi, Higher derivative corrections to black hole thermodynamics from supersymmetric matrix quantum mechanics, Phys. Rev. Lett.102 (2009) 191602 [arXiv:0811.3102] [INSPIRE]. · doi:10.1103/PhysRevLett.102.191602
[38] M. Hanada, J. Nishimura, Y. Sekino and T. Yoneya, Monte Carlo studies of matrix theory correlation functions, Phys. Rev. Lett.104 (2010) 151601 [arXiv:0911.1623] [INSPIRE]. · doi:10.1103/PhysRevLett.104.151601
[39] M. Hanada, J. Nishimura, Y. Sekino and T. Yoneya, Direct test of the gauge-gravity correspondence for matrix theory correlation functions, JHEP12 (2011) 020 [arXiv:1108.5153] [INSPIRE]. · Zbl 1306.81107 · doi:10.1007/JHEP12(2011)020
[40] M. Hanada, Y. Hyakutake, G. Ishiki and J. Nishimura, Holographic description of quantum black hole on a computer, Science344 (2014) 882 [arXiv:1311.5607] [INSPIRE]. · doi:10.1126/science.1250122
[41] S. Catterall and T. Wiseman, Towards lattice simulation of the gauge theory duals to black holes and hot strings, JHEP12 (2007) 104 [arXiv:0706.3518] [INSPIRE]. · Zbl 1246.81112 · doi:10.1088/1126-6708/2007/12/104
[42] S. Catterall and T. Wiseman, Black hole thermodynamics from simulations of lattice Yang-Mills theory, Phys. Rev.D 78 (2008) 041502 [arXiv:0803.4273] [INSPIRE].
[43] S. Catterall and T. Wiseman, Extracting black hole physics from the lattice, JHEP04 (2010) 077 [arXiv:0909.4947] [INSPIRE]. · Zbl 1272.83046 · doi:10.1007/JHEP04(2010)077
[44] S. Catterall, A. Joseph and T. Wiseman, Gauge theory duals of black hole-black string transitions of gravitational theories on a circle, J. Phys. Conf. Ser.462 (2013) 012022 [arXiv:1009.0529] [INSPIRE]. · doi:10.1088/1742-6596/462/1/012022
[45] S. Catterall, A. Joseph and T. Wiseman, Thermal phases of D1-branes on a circle from lattice super Yang-Mills, JHEP12 (2010) 022 [arXiv:1008.4964] [INSPIRE]. · Zbl 1294.81176 · doi:10.1007/JHEP12(2010)022
[46] I.R. Klebanov and A.A. Tseytlin, Entropy of near extremal black p-branes, Nucl. Phys.B 475 (1996) 164 [hep-th/9604089] [INSPIRE]. · Zbl 0925.81176 · doi:10.1016/0550-3213(96)00295-7
[47] R. Dijkgraaf and G.W. Moore, Balanced topological field theories, Commun. Math. Phys.185 (1997) 411 [hep-th/9608169] [INSPIRE]. · Zbl 0888.58008 · doi:10.1007/s002200050097
[48] C. Vafa and E. Witten, A strong coupling test of S duality, Nucl. Phys.B 431 (1994) 3 [hep-th/9408074] [INSPIRE]. · Zbl 0964.81522 · doi:10.1016/0550-3213(94)90097-3
[49] J.M.F. Labastida and C. Lozano, Mathai-Quillen formulation of twisted N = 4 supersymmetric gauge theories in four-dimensions, Nucl. Phys.B 502 (1997) 741 [hep-th/9702106] [INSPIRE]. · Zbl 0938.81040 · doi:10.1016/S0550-3213(97)00421-5
[50] M. Blau and G. Thompson, Aspects of NT ≥ two topological gauge theories and D-branes, Nucl. Phys.B 492 (1997) 545 [hep-th/9612143] [INSPIRE]. · Zbl 0996.58504 · doi:10.1016/S0550-3213(97)00161-2
[51] M.A. Clark, A.D. Kennedy and Z. Sroczynski, Exact 2 + 1 flavour RHMC simulations, Nucl. Phys. Proc. Suppl.140 (2005) 835 [hep-lat/0409133] [INSPIRE]. · doi:10.1016/j.nuclphysbps.2004.11.192
[52] A. Frommer, B. Nockel, S. Gusken, T. Lippert and K. Schilling, Many masses on one stroke: economic computation of quark propagators, Int. J. Mod. Phys.C 6 (1995) 627 [hep-lat/9504020] [INSPIRE]. · doi:10.1142/S0129183195000538
[53] B. Jegerlehner, Krylov space solvers for shifted linear systems, hep-lat/9612014 [INSPIRE].
[54] M.A. Clark and A.D. Kennedy, AlgRemez source code, https://github.com/mikeaclark/AlgRemez, (2005).
[55] I. Kanamori and H. Suzuki, Restoration of supersymmetry on the lattice: two-dimensional N = (2,2) supersymmetric Yang-Mills theory, Nucl. Phys.B 811 (2009) 420 [arXiv:0809.2856] [INSPIRE]. · Zbl 1194.81233 · doi:10.1016/j.nuclphysb.2008.11.021
[56] E. Anderson et al., LAPACK users’ guide, third edition, Society for Industrial and Applied Mathematics, Philadelphia U.S.A. (1999). · Zbl 0755.65028
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.