×

Geodesic distance in planar graphs. (English) Zbl 1022.05022

Summary: We derive the exact generating function for planar maps (genus zero fatgraphs) with vertices of arbitrary even valence and with two marked points at a fixed geodesic distance. This is done in a purely combinatorial way based on a bijection with decorated trees, leading to a recursion relation on the geodesic distance. The latter is solved exactly in terms of discrete soliton-like expressions, suggesting an underlying integrable structure. We extract from this solution the fractal dimensions at the various (multi)-critical points, as well as the precise scaling forms of the continuum two-point functions and the probability distributions for the geodesic distance in (multi)-critical random surfaces. The two-point functions are shown to obey differential equations involving the residues of the KdV hierarchy.

MSC:

05C12 Distance in graphs

References:

[1] Tutte, W., A census of planar maps, Canad. J. Math., 15, 249-271 (1963) · Zbl 0115.17305
[2] Brézin, E.; Itzykson, C.; Parisi, G.; Zuber, J.-B., Planar diagrams, Commun. Math. Phys., 59, 35-51 (1978) · Zbl 0997.81548
[3] Di Francesco, P.; Ginsparg, P.; Zinn-Justin, J., 2D gravity and random matrices, Phys. Rep., 254, 1-131 (1995)
[4] Eynard, B., Random matrices, Saclay Lecture Notes (2000) · Zbl 0925.82121
[5] Distler, J.; Kawai, H., Conformal field theory and 2D quantum gravity, Nucl. Phys. B, 321, 509-527 (1989)
[6] Kawai, H.; Kawamoto, N.; Mogami, T.; Watabiki, Y., Transfer matrix formalism for two-dimensional quantum gravity and fractal structures of spacetime, Phys. Lett. B, 306, 19-26 (1993)
[7] Ambjørn, J.; Watabiki, Y., Scaling in quantum gravity, Nucl. Phys. B, 445, 129-144 (1995) · Zbl 1006.83015
[8] Ambjørn, J.; Jurkiewicz, J.; Watabiki, Y., On the fractal structure of two-dimensional quantum gravity, Nucl. Phys. B, 454, 313-342 (1995) · Zbl 0925.83006
[9] Chassaing, P.; Schaeffer, G., Random planar lattices and integrated super-Brownian excursion, Probab. Theory Related Fields (2002), in press · Zbl 1025.60004
[10] See also, G. Schaeffer, Conjugaison d’arbres et cartes combinatoires aléatoires, PhD Thesis, Université Bordeaux I (1998); See also, G. Schaeffer, Conjugaison d’arbres et cartes combinatoires aléatoires, PhD Thesis, Université Bordeaux I (1998) · Zbl 0885.05076
[11] Bouttier, J.; Di Francesco, P.; Guitter, E., Census of planar maps: from the one-matrix model solution to a combinatorial proof, Nucl. Phys. B, 645, 477-499 (2002) · Zbl 0999.05052
[12] Bousquet-Mélou, M.; Schaeffer, G., Enumeration of planar constellations, Adv. Appl. Math., 24, 337-368 (2000) · Zbl 0955.05004
[13] Jimbo, M.; Miwa, T., Solitons and infinite-dimensional Lie algebras, Publ. Res. Inst. Math. Sci. Kyoto Univ., 19, 3, 943-1001 (1983), Eq. (2.12) · Zbl 0557.35091
[14] Staudacher, M., The Yang-Lee edge singularity on a dynamical planar random surface, Nucl. Phys. B, 336, 349-362 (1990)
[15] Gelfand, I.; Dikii, L., Fractional powers of operators and Hamiltonian systems, Funct. Anal. Appl., 10, 4, 13 (1976) · Zbl 0346.35085
[16] Kawamoto, N.; Yotsuji, K., Numerical study for the c-dependence of fractal dimension in two-dimensional quantum gravity, Nucl. Phys. B, 644, 533-567 (2002) · Zbl 0999.83017
[17] Bouttier, J.; Di Francesco, P.; Guitter, E., Counting colored random triangulations, Nucl. Phys. B, 641, 519-532 (2002) · Zbl 0998.05019
[18] Bousquet-Mélou, M.; Schaeffer, G., The degree distribution in bipartite planar maps: application to the Ising model
[19] Bouttier, J.; Di Francesco, P.; Guitter, E., Combinatorics of hard particles on planar maps, Nucl. Phys. B, 655, 313-341 (2002) · Zbl 1009.82005
[20] J. Bouttier, P. Di Francesco, E. Guitter, in preparation; J. Bouttier, P. Di Francesco, E. Guitter, in preparation
[21] Delmas, J.-F., Computation of moments for the length of the one dimensional ISE support, (2002)
[22] Di Francesco, P.; Guitter, E., Critical and multicritical semi-random \((1+d)\)-dimensional lattices and hard objects in \(d\) dimensions, J. Phys. A: Math. Gen., 35, 897-927 (2002) · Zbl 0993.82026
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.