×

On solutions of a discretized heat equation in discrete Clifford analysis. (English) Zbl 1283.39002

Summary: The main purpose of this paper is to study solutions of the heat equation in the setting of discrete Clifford analysis. More precisely, we consider this equation with discrete space and continuous time. Thereby, we focus on representations of solutions by means of dual Taylor series expansions. Furthermore, we develop a discrete convolution theory, apply it to the inhomogeneous heat equation and construct solutions for the related Cauchy problem by means of heat polynomials.

MSC:

39A12 Discrete version of topics in analysis
35K05 Heat equation
15A66 Clifford algebras, spinors
35K08 Heat kernel
Full Text: DOI

References:

[1] Brackx F., Cubo 11 (1) pp 55– (2009)
[2] F.Brackx, H.De Schepper, F.Sommen, and L.Van de Voorde, Discrete Clifford analysis: A germ of function theory, in Hypercomplex Analysis, I.Sabadini and F.Sommen, eds. Birkhäuser, Basel, 2009, pp. 37–53. · Zbl 1173.30034
[3] De Bie H., Complex Var. Elliptic Equ. Int. J. (2011)
[4] DOI: 10.1090/S0002-9939-2010-10480-X · Zbl 1201.30062 · doi:10.1090/S0002-9939-2010-10480-X
[5] De Ridder H., Commun. Pure Appl. Math. 10 (4) pp 1097– (2011)
[6] DOI: 10.1007/s00209-011-0932-5 · Zbl 1258.30024 · doi:10.1007/s00209-011-0932-5
[7] De Ridder H., Complex Anal. Oper. Theory (2013)
[8] H. De Ridder, H. De Schepper, and F. Sommen, Clifford–Hermite polynomials in discrete Clifford setting, (in preparation) · Zbl 1258.30024
[9] DOI: 10.1080/10586458.2009.10129056 · Zbl 1186.30044 · doi:10.1080/10586458.2009.10129056
[10] DOI: 10.1215/S0012-7094-56-02332-8 · Zbl 0070.30503 · doi:10.1215/S0012-7094-56-02332-8
[11] DOI: 10.1080/10236190600637965 · Zbl 1092.76043 · doi:10.1080/10236190600637965
[12] DOI: 10.1007/s00006-006-0016-5 · Zbl 1116.15023 · doi:10.1007/s00006-006-0016-5
[13] DOI: 10.1007/s00006-007-0041-z · Zbl 1208.30046 · doi:10.1007/s00006-007-0041-z
[14] Ferrand J., Bull. Sci. Math. Sec. Ser. 68 pp 152– (1944)
[15] E. Forgy and U. Schreiber, Discrete differential geometry on causal graphs, preprint (2004). Available at arXiv, math-ph/0407005v1.
[16] DOI: 10.1002/mma.389 · Zbl 1013.30031 · doi:10.1002/mma.389
[17] DOI: 10.1007/BF03219125 · Zbl 1221.30107 · doi:10.1007/BF03219125
[18] K.Gürlebeck and W.Sprößig, Quaternionic and Clifford Calculus for Engineers and Physicists, Wiley, Chichester, 1997. · Zbl 0897.30023
[19] Kanamori I., Int. J. Mod. Phys. 19 pp 695– (2004) · Zbl 1080.81535 · doi:10.1142/S0217751X04017628
[20] S.Roman, The Umbral Calculus, Academic Press, San Diego, CA, 1984. · Zbl 0536.33001
[21] V.S.Ryabenkij, The Method of Difference Potentials for Some Classes of Continuum Mechanics, (Russian) Nauka, Moscow, 1987.
[22] DOI: 10.1142/5314 · doi:10.1142/5314
[23] DOI: 10.1007/BF03041215 · doi:10.1007/BF03041215
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.