×

On some modules supported in the Chow variety. (English) Zbl 1495.14079

The Chow variety \(Y_{d,n}\) is the set of homogeneous polynomials of degree \(d\) in \(n+1\) variables which decompose into a product of linear forms. The standard parameterization of \(Y_{d,n}\) realizes the coordinate ring \(\pmb k[Y_{d,n}]\) as a subalgebra of \(A_{d,n}\), which is the homogeneous coordinate ring of the Segre product \((\mathbb P^n)^{\times d}\). There is a natural action of the symmetric group \(\mathfrak S_n\) on \(A_{d,n}\) and the invariant subring \(B_{d,n}=A_{d,n}^{\mathfrak S_n}\) is the normalization of \(\pmb k[Y_{d,n}]\). The normalization map has connections to Foulkes’ conjecture [H. O. Foulkes, J. Lond. Math. Soc. 25, 205–209 (1950; Zbl 0037.14902)] about plethysm coefficients in algebraic combinatorics.
Let \(\lambda\) be a partition of \(d\) and \[ M_\lambda=\operatorname{Hom}_{\mathfrak S_d}(V_\lambda,A_{d,n}), \] where \(V_\lambda\) is the irreducible \(\mathfrak S_d\)-representation which corresponds to \(\lambda\). In characteristic zero, \(M_\lambda\) is a maximal Cohen-Macaulay module supported on \(Y_{d,n}\). The space \(Y_{d,1}\) is affine, so the modules \(M_\lambda\) are free in this case, but the description of their generators involves interesting combinatorics related to the statistics of descents and major indices, and to Kostka-Foulkes polynomials. One way to interpret the formulas in the case \(n = 1\) is as generalizations of Hermite Reciprocity, which states that if the dimension of the vector space \(U\) is two, then, for all non-negative \(a\) and \(b\), the \(\operatorname{GL}(U)\)-representations \[ \operatorname{Sym}_a(\operatorname{Sym}_bU)\text{ and }\operatorname{Sym}_b(\operatorname{Sym}_aU) \] are isomorphic. For general parameters \(d\) and \(n\), the paper takes a first step in the study of the syzygies of \(M_\lambda\) by establishing a bound on their Castelnuovo-Mumford regularity.
The paper gives a flavor of the questions and results surrounding Chow varieties, with the intention that future research will be sparked in this area.

MSC:

14M99 Special varieties
05E05 Symmetric functions and generalizations
13A50 Actions of groups on commutative rings; invariant theory

Citations:

Zbl 0037.14902

Software:

LiE

References:

[1] Aronhold, S., Zur Theorie der homogenen Functionen dritten Grades von drei Variabeln, J. Reine Angew. Math., 1850, 39, 140-159 (2009) · ERAM 039.1072cj
[2] Boutot, J-F, Singularités rationnelles et quotients par les groupes réductifs, Invent. Math., 88, 65-68 (1987) · Zbl 0619.14029 · doi:10.1007/BF01405091
[3] Briand, E., When is the algebra of multisymmetric polynomials generated by the elementary multisymmetric polynomials?, Beitr. Algebra Geom., 45, 353-368 (2004) · Zbl 1062.05140
[4] Briand, E., Brill’s equations of the subvariety of the products of linear forms. Actas de los IX Encuentros de Algebra Computacional y Apliccationes, EACA, 2004, Santander, 59-63 (2004)
[5] Brill, A., Ueber symmetrische Functionen von Variabelnpaaren. Nachrichten von der Königl, Gesellschaft der Wissenschaften und der Georg-Augusts-Universitä,t zu Göttingen, 20, 757-762 (1893) · JFM 25.0233.01
[6] Brill, A., Ueber die Zerfällung einer Ternärform in Linearfactoren, Math. Ann., 50, 157-182 (1898) · JFM 29.0092.02 · doi:10.1007/BF01448060
[7] Brion, M., Stable properties of plethysm: on two conjectures of Foulkes, Manuscripta Math., 80, 347-371 (1993) · Zbl 0823.20039 · doi:10.1007/BF03026558
[8] Brion, M., Sur certains modules gradués associés aux produits symétriques. Algèbre non commutative, groupes quantiques et invariants, Reims, 1995, Sémin. Congr., 2, 157-183 (1997) · Zbl 0894.20030
[9] Carlitz, L., A combinatorial property of q-Eulerian numbers, Amer. Math. Mon., 82, 51-54 (1975) · Zbl 0296.05007 · doi:10.1080/00029890.1975.11993769
[10] Cheng, S-E; Elizalde, S.; Kasraoui, A.; Sagan, BE, Inversion polynomials for 321-avoiding permutations, Discrete Math., 313, 2552-2565 (2013) · Zbl 1281.05005 · doi:10.1016/j.disc.2013.07.026
[11] Cheung, M-W; Ikenmeyer, C.; Mkrtchyan, S., Symmetrizing tableaux and the 5th case of the Foulkes conjecture, J. Symb. Comput., 80, 833-843 (2017) · Zbl 1486.20063 · doi:10.1016/j.jsc.2016.09.002
[12] Dalbec, J., Multisymmetric functions, Beitr. Algebra Geom., 40, 27-51 (1999) · Zbl 0953.05077
[13] Eisenbud, D.; Schreyer, F-O, Betti numbers of graded modules and cohomology of vector bundles, J. Amer. Math. Soc., 22, 859-888 (2009) · Zbl 1213.13032 · doi:10.1090/S0894-0347-08-00620-6
[14] Foulkes, HO, Concomitants of the quintic and sextic up to degree four in the coefficients of the ground form, J. Lond. Math. Soc., s1-25, 205-209 (1950) · Zbl 0037.14902 · doi:10.1112/jlms/s1-25.3.205
[15] Fulton, W.; Harris, J., Representation Theory. Graduate Texts in Mathematics, vol. 129 (1991), New York: Springer, New York · Zbl 0744.22001
[16] Gelfand, IM; Kapranov, MM; Zelevinsky, AV, Discriminants, Resultants and Multidimensional Determinants. Reprint of the 1994 Edition. Modern Birkhäuser Classics (2008), Boston: Birkhäuser, Boston · Zbl 1138.14001
[17] Gessel, IM; Zhuang, Y., Plethystic formulas for permutation enumeration, Adv. Math., 375, 107370 (2020) · Zbl 1453.05007 · doi:10.1016/j.aim.2020.107370
[18] Goodman, FM; O’Hara, KM; Stanton, D., A unimodality identity for a Schur function, J. Combin. Theory Ser. A, 60, 143-146 (1992) · Zbl 0768.05093 · doi:10.1016/0097-3165(92)90045-V
[19] Gordan, P., Das Zerfallen der Curven in gerade Linien, Math. Ann., 45, 410-427 (1894) · JFM 25.1086.02 · doi:10.1007/BF01446687
[20] Guan, Y., Brill’s equations as a GL(V )-module, Linear Algebra Appl., 548, 273-292 (2018) · Zbl 1400.14135 · doi:10.1016/j.laa.2018.02.026
[21] Howe, R., (GLn,GLm)-duality and symmetric plethysm, Proc. Indian Acad. Sci. Math. Sci., 97, 85-109 (1988) · Zbl 0705.20040 · doi:10.1007/BF02837817
[22] Keith, WJ, Families of major index distributions: closed forms and unimodality, Electron. J. Combin., 26, P3.58 (2019) · Zbl 1420.05181 · doi:10.37236/8585
[23] Kirillov, AN; Reshetikhin, NY, The Bethe ansatz and the combinatorics of Young tableaux, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 155, 65-115 (1986) · Zbl 0617.20025
[24] Landsberg, JM, Geometric complexity theory: an introduction for geometers, Ann. Univ. Ferrara Sez. VII Sci. Mat., 61, 65-117 (2015) · Zbl 1329.68128 · doi:10.1007/s11565-014-0202-7
[25] van Leeuwen, M.A.A., Cohen, A.M., Lisser, B.: “LiE, a package for Lie group computations” version 2.2.2. http://www-math.univ-poitiers.fr/ maavl/LiE/ (2000)
[26] Macdonald, IG, Symmetric Functions and Hall Polynomials, 2nd edn. Oxford Classic Texts in the Physical Sciences (2015), New York: The Clarendon Press, Oxford University Press, New York
[27] MacMahon, PA, Combinatory Analysis, vol. I, II (bound as one) (1960), New York: Chelsea Publishing Co., New York · Zbl 0101.25102
[28] Müller, J.; Neunhöffer, M., Some computations regarding Foulkes’ conjecture, Exp. Math., 14, 277-283 (2005) · Zbl 1081.05106 · doi:10.1080/10586458.2005.10128928
[29] Nagata, M., On the normality of the Chow variety of positive 0-cycles of degree m in an algebraic variety, Mem. College Sci. Univ. Kyoto Ser. A Math., 29, 165-176 (1955) · Zbl 0066.14701
[30] Neeman, A., Zero cycles in Pn, Adv. Math., 89, 217-227 (1991) · Zbl 0787.14004 · doi:10.1016/0001-8708(91)90079-M
[31] Noether, E., Der Endlichkeitssatz der Invarianten endlicher Gruppen, Math. Ann., 77, 89-92 (1915) · JFM 45.0198.01 · doi:10.1007/BF01456821
[32] Ottaviani, G., An invariant regarding Waring’s problem for cubic polynomials, Nagoya Math. J., 193, 95-110 (2009) · Zbl 1205.14064 · doi:10.1017/S0027763000026040
[33] Porras, O., Rank varieties and their resolutions, J. Algebra, 186, 677-723 (1996) · Zbl 0884.14022 · doi:10.1006/jabr.1996.0391
[34] Rydh, D., A minimal set of generators for the ring of multisymmetric functions, Ann. Inst. Fourier (Grenoble), 57, 1741-1769 (2007) · Zbl 1130.13005 · doi:10.5802/aif.2312
[35] Sam, S.V., Snowden, A.: Introduction to twisted commutative algebras. arXiv:1209.5122v1 (2012)
[36] Schläfli, L., Über die Resultante eines Systemes mehrerer algebraischer Gleichungen. Ein Beitrag zur Theorie der Elimination, Denkschriften der Kaiserlichen Akademie der Wissenschaften / Mathematisch-Naturwissenschaftliche Classe, 4, 1-74 (1852)
[37] Stanley, RP, Enumerative Combinatorics, vol. 2. Cambridge Studies in Advanced Mathematics, vol. 62 (1999), Cambridge: Cambridge University Press, Cambridge · Zbl 0928.05001 · doi:10.1017/CBO9780511609589
[38] Weyl, H., The Classical Groups. Their Invariants and Representations (1939), Princeton: Princeton University Press, Princeton · Zbl 0020.20601
[39] Weyman, J., Cohomology of Vector Bundles and Syzygies. Cambridge Tracts in Mathematics, vol. 149 (2003), Cambridge: Cambridge University Press, Cambridge · Zbl 1075.13007 · doi:10.1017/CBO9780511546556
[40] Yang, DH, Sn-equivariant sheaves and Koszul cohomology, Res. Math. Sci., 1, 10 (2014) · Zbl 1349.14088 · doi:10.1186/s40687-014-0010-9
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.