×

Quantum abelian Yang-Mills theory on Riemannian manifolds with boundary. (English) Zbl 1454.81142

Summary: We quantize abelian Yang-Mills theory on Riemannian manifolds with boundaries in any dimension. The quantization proceeds in two steps. First, the classical theory is encoded into an axiomatic form describing solution spaces associated to manifolds. Second, the quantum theory is constructed from the classical axiomatic data in a functorial manner. The target is general boundary quantum field theory, a TQFT-type axiomatic formulation of quantum field theory.

MSC:

81T13 Yang-Mills and other gauge theories in quantum field theory
70S15 Yang-Mills and other gauge theories in mechanics of particles and systems
81T20 Quantum field theory on curved space or space-time backgrounds
81T70 Quantization in field theory; cohomological methods
53D50 Geometric quantization
58E15 Variational problems concerning extremal problems in several variables; Yang-Mills functionals
58E30 Variational principles in infinite-dimensional spaces

References:

[1] Ashtekar, A. and Magnon, Anne, Quantum fields in curved space-times, Proceedings of the Royal Society. London. Series A. Mathematical, Physical and Engineering Sciences, 346, 1646, 375-394, (1975) · Zbl 0948.81612 · doi:10.1098/rspa.1975.0181
[2] Atiyah, Michael, Topological quantum field theories, Institut des Hautes \'{E}tudes Scientifiques. Publications Math\'{e}matiques, 68, 175-186, (1988) · Zbl 0692.53053 · doi:10.1007/BF02698547
[3] Atiyah, M. F. and Bott, R., The {Y}ang–{M}ills equations over {R}iemann surfaces, Philosophical Transactions of the Royal Society of London. Series A. Mathematical and Physical Sciences, 308, 1505, 523-615, (1983) · Zbl 0509.14014 · doi:10.1098/rsta.1983.0017
[4] Blau, Matthias and Thompson, George, Quantum {Y}ang–{M}ills theory on arbitrary surfaces, International Journal of Modern Physics A. Particles and Fields. Gravitation. Cosmology, 7, 16, 3781-3806, (1992) · doi:10.1142/S0217751X9200168X
[5] Cattaneo, Alberto S. and Mnev, Pavel and Reshetikhin, Nicolai, Semiclassical quantization of classical field theories, Mathematical Aspects of Quantum Field Theories, Math. Phys. Stud., 275-324, (2015), Springer, Cham · Zbl 1315.81095 · doi:10.1007/978-3-319-09949-1_9
[6] Cattaneo, Alberto S. and Mnev, Pavel and Reshetikhin, Nicolai, Perturbative quantum gauge theories on manifolds with boundary, Communications in Mathematical Physics, 357, 2, 631-730, (2018) · Zbl 1390.81381 · doi:10.1007/s00220-017-3031-6
[7] D\'{i}az-Mar\'{i}n, Homero G., General boundary formulation for {\(n\)}-dimensional classical abelian theory with corners, SIGMA. Symmetry, Integrability and Geometry. Methods and Applications, 11, 048, 35 pages, (2015) · Zbl 1377.53105 · doi:10.3842/SIGMA.2015.048
[8] D\'{i}az-Mar\'{i}n, Homero G., Dirichlet to {N}eumann operator for abelian {Y}ang–{M}ills gauge fields, International Journal of Geometric Methods in Modern Physics, 14, 11, 1750153, 25 pages, (2017) · Zbl 1385.58011 · doi:10.1142/S0219887817501535
[9] Fine, Dana S., Quantum {Y}ang–{M}ills on a {R}iemann surface, Communications in Mathematical Physics, 140, 2, 321-338, (1991) · Zbl 0734.53069 · doi:10.1007/BF02099502
[10] Gallot, Sylvestre and Hulin, Dominique and Lafontaine, Jacques, Riemannian geometry, Universitext, xvi+322, (2004), Springer-Verlag, Berlin · Zbl 1068.53001 · doi:10.1007/978-3-642-18855-8
[11] Kandel, Santosh, Functorial quantum field theory in the {R}iemannian setting, Advances in Theoretical and Mathematical Physics, 20, 6, 1443-1471, (2016) · Zbl 1431.81153 · doi:10.4310/ATMP.2016.v20.n6.a5
[12] Lee, Joohan and Wald, Robert M., Local symmetries and constraints, Journal of Mathematical Physics, 31, 3, 725-743, (1990) · Zbl 0704.70013 · doi:10.1063/1.528801
[13] Oeckl, Robert, A local and operational framework for the foundations of physics, Advances in Theoretical and Mathematical Physics · Zbl 1210.81039
[14] Oeckl, Robert, General boundary quantum field theory: foundations and probability interpretation, Advances in Theoretical and Mathematical Physics, 12, 2, 319-352, (2008) · Zbl 1210.81039 · doi:10.4310/ATMP.2008.v12.n2.a3
[15] Oeckl, Robert, Two-dimensional quantum {Y}ang–{M}ills theory with corners, Journal of Physics. A. Mathematical and Theoretical, 41, 13, 135401, 20 pages, (2008) · Zbl 1138.81036 · doi:10.1088/1751-8113/41/13/135401
[16] Oeckl, Robert, Affine holomorphic quantization, Journal of Geometry and Physics, 62, 6, 1373-1396, (2012) · Zbl 1245.81287 · doi:10.1016/j.geomphys.2012.02.001
[17] Oeckl, Robert, Holomorphic quantization of linear field theory in the general boundary formulation, SIGMA. Symmetry, Integrability and Geometry. Methods and Applications, 8, 050, 31 pages, (2012) · Zbl 1285.81042 · doi:10.3842/SIGMA.2012.050
[18] Oeckl, Robert, Free {F}ermi and {B}ose fields in {TQFT} and {GBF}, SIGMA. Symmetry, Integrability and Geometry. Methods and Applications, 9, 028, 46 pages, (2013) · Zbl 1283.81114 · doi:10.3842/SIGMA.2013.028
[19] Oeckl, Robert, A positive formalism for quantum theory in the general boundary formulation, Foundations of Physics. An International Journal Devoted to the Conceptual Bases and Fundamental Theories of Modern Physics, 43, 10, 1206-1232, (2013) · Zbl 1295.81013 · doi:10.1007/s10701-013-9741-5
[20] Oeckl, Robert, Schr\"{o}dinger–{F}eynman quantization and composition of observables in general boundary quantum field theory, Advances in Theoretical and Mathematical Physics, 19, 2, 451-506, (2015) · Zbl 1328.81211 · doi:10.4310/ATMP.2015.v19.n2.a2
[21] Rusakov, B. Ye., Loop averages and partition functions in {\({\rm U}(N)\)} gauge theory on two-dimensional manifolds, Modern Physics Letters A. Particles and Fields, Gravitation, Cosmology, Nuclear Physics, 5, 9, 693-703, (1990) · Zbl 1020.81716 · doi:10.1142/S0217732390000780
[22] Schwarz, G\"{u}nter, Hodge decomposition – a method for solving boundary value problems, Lecture Notes in Math., 1607, viii+155, (1995), Springer-Verlag, Berlin · Zbl 0828.58002 · doi:10.1007/BFb0095978
[23] Sengupta, Ambar N., The moduli space of flat connections on oriented surfaces with boundary, Journal of Functional Analysis, 190, 1, 179-232, (2002) · Zbl 1012.53065 · doi:10.1006/jfan.2001.3882
[24] Verlinde, Erik, Global aspects of electric-magnetic duality, Nuclear Physics. B. Theoretical, Phenomenological, and Experimental High Energy Physics. Quantum Field Theory and Statistical Systems, 455, 1-2, 211-225, (1995) · Zbl 0925.58107 · doi:10.1016/0550-3213(95)00431-Q
[25] Weinstein, Alan, Symplectic categories, Portugaliae Mathematica. A Journal of the Portuguese Mathematical Society, 67, 2, 261-278, (2010) · Zbl 1193.53173 · doi:10.4171/PM/1866
[26] Witten, Edward, On quantum gauge theories in two dimensions, Communications in Mathematical Physics, 141, 1, 153-209, (1991) · Zbl 0762.53063 · doi:10.1007/BF02100009
[27] Woodhouse, N. M. J., Geometric quantization, Oxford Mathematical Monographs, xii+307, (1992), The Clarendon Press, Oxford University Press, New York · Zbl 0747.58004
[28] Zuckerman, Gregg J., Action principles and global geometry, Mathematical Aspects of String Theory ({S}an {D}iego, {C}alif., 1986), Adv. Ser. Math. Phys., 1, 259-284, (1987), World Sci. Publishing, Singapore · Zbl 0669.58014 · doi:10.1142/9789812798411_0013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.