×

Basic principles of learning Bayesian logic programs. (English) Zbl 1137.68544

De Raedt, Luc (ed.) et al., Probabilistic inductive logic programming. Theory and applications. Berlin: Springer (ISBN 978-3-540-78651-1/pbk). Lecture Notes in Computer Science 4911. Lecture Notes in Artificial Intelligence, 189-221 (2008).
Summary: Bayesian logic programs tightly integrate definite logic programs with Bayesian networks in order to incorporate the notions of objects and relations into Bayesian networks. They establish a one-to-one mapping between ground atoms and random variables, and between the immediate consequence operator and the directly influenced by relation. In doing so, they nicely separate the qualitative (i.e. logical) component from the quantitative (i.e. the probabilistic) one providing a natural framework to describe general, probabilistic dependencies among sets of random variables. In this chapter, we present results on combining Inductive Logic Programming with Bayesian networks to learn both the qualitative and the quantitative components of Bayesian logic programs from data. More precisely, we show how the qualitative components can be learned by combining the inductive logic programming setting learning from interpretations with score-based techniques for learning Bayesian networks. The estimation of the quantitative components is reduced to the corresponding problem of (dynamic) Bayesian networks.
For the entire collection see [Zbl 1132.68007].

MSC:

68T05 Learning and adaptive systems in artificial intelligence
68N17 Logic programming

References:

[1] Bangsø, O.; Langseth, H.; Nielsen, T. D.; Russell, I.; Kolen, J., Structural learning in object oriented domains, Proceedings of the Fourteenth International Florida Artificial Intelligence Research Society Conference (FLAIRS 2001), 340-344 (2001), Menlo Park: AAAI Press, Menlo Park
[2] Bauer, H.: Wahrscheinlichkeitstheorie, 4th edn., Walter de Gruyter, Berlin, New York (1991) · Zbl 0714.60001
[3] Binder, J.; Koller, D.; Russell, S.; Kanazawa, K., Adaptive Probabilistic Networks with Hidden Variables, Machine Learning, 29, 2-3, 213-244 (1997) · Zbl 0892.68079 · doi:10.1023/A:1007421730016
[4] Bishop, C. M., Neural Networks for Pattern Recognition (1995), Oxford: Oxford University Press, Oxford
[5] Blockeel, H.; De Raedt, L.; Džeroski, S.; Lavrač, N., Lookahead and discretization in ilp, Inductive Logic Programming, 77-85 (1997), Heidelberg: Springer, Heidelberg
[6] Blockeel, H.; De Raedt, L., ISIDD: An Interactive System for Inductive Database Design, Applied Artificial Intelligence, 12, 5, 385 (1998) · doi:10.1080/088395198117695
[7] Buntine, W., A guide to the literature on learning probabilistic networks from data, IEEE Transaction on Knowledge and Data Engineering, 8, 195-210 (1996) · doi:10.1109/69.494161
[8] Cheng, J.; Hatzis, C.; Krogel, M.-A.; Morishita, S.; Page, D.; Sese, J., KDD Cup 2002 Report, SIGKDD Explorations, 3, 2, 47-64 (2002) · doi:10.1145/507515.507523
[9] Cooper, G. F., The computational complexity of probabilistic inference using Bayesian belief networks, Artificial Intelligence, 42, 393-405 (1990) · Zbl 0717.68080 · doi:10.1016/0004-3702(90)90060-D
[10] Cowell, R. G.; Dawid, A. P.; Lauritzen, S. L.; Spiegelhalter, D. J., Probabilistic networks and expert systems, Statistics for engineering and information (1999), Heidelberg: Springer, Heidelberg · Zbl 0937.68121
[11] Cussens, J., Parameter estimation in stochastic logic programs, Machine Learning, 44, 3, 245-271 (2001) · Zbl 0986.68010 · doi:10.1023/A:1010924021315
[12] De Raedt, L., Logical settings for concept-learning, Artificial Intelligence, 95, 1, 197-201 (1997) · Zbl 0894.68142 · doi:10.1016/S0004-3702(97)00041-6
[13] De Raedt, L.; Bruynooghe, M.; Bajcsy, R., A theory of clausal discovery, Proceedings of the Thirteenth International Joint Conference on Artificial Intelligence (IJCAI 1993), 1058-1063 (1993), San Francisco: Morgan Kaufmann, San Francisco
[14] De Raedt, L.; Dehaspe, L., Clausal discovery, Machine Learning, 26, 2-3, 99-146 (1997) · Zbl 0866.68021 · doi:10.1023/A:1007361123060
[15] Dempster, A. P.; Laird, N. M.; Rubin, D. B., Maximum likelihood from incomplete data via the EM algorithm, J. Royal Stat. Soc., B 39, 1-39 (1977) · Zbl 0364.62022
[16] Dick, U., Kersting, K.: Fisher Kernels for relational data. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) Proceedings of the 17th European Conference on Machine Learning (ECML 2006), Berlin, Germany, pp. 112-125 (2006)
[17] Flach, P. A.; Lachiche, N.; Džeroski, S.; Flach, P. A., 1BC: A first-order Bayesian classifier, Inductive Logic Programming, 92-103 (1999), Heidelberg: Springer, Heidelberg · doi:10.1007/3-540-48751-4_10
[18] Friedman, N.; Geiger, D.; Goldszmidt, M., Bayesian network classifiers, Machine Learning, 29, 131-163 (1997) · Zbl 0892.68077 · doi:10.1023/A:1007465528199
[19] Friedman, N.; Getoor, L.; Koller, D.; Pfeffer, A.; Dean, T., Learning probabilistic relational models, Proceedings of the Sixteenth International Joint Conferences on Artificial Intelligence (IJCAI 1999), 1300-1309 (1999), San Francisco: Morgan Kaufmann, San Francisco
[20] Getoor, L.; Koller, D.; Taskar, B.; Friedman, N.; Getoor, L.; Jensen, D., Learning probabilistic relational models with structural uncertainty, Proceedings of the AAAI-2000 Workshop on Learning Statistical Models from Relational Data (2000), Menlo Park: AAAI Press, Menlo Park
[21] Gilks, W.R., Thomas, A., Spiegelhalter, D.J.: A language and program for complex bayesian modelling. The Statistician 43 (1994)
[22] Heckerman, D.: A Tutorial on Learning with Bayesian Networks. Technical Report MSR-TR-95-06, Microsoft Research (1995) · Zbl 0921.62029
[23] Heckerman, D., Breese, J.: Causal Independence for Probability Assessment and Inference Using Bayesian Networks. Technical Report MSR-TR-94-08, Microsoft Research (1994)
[24] Jaeger, M.; Geiger, D.; Shenoy, P. P., Relational Bayesian networks, Proceedings of the Thirteenth Annual Conference on Uncertainty in Artificial Intelligence (UAI 1997), 266-273 (1997), San Francisco: Morgan Kaufmann, San Francisco
[25] Jamshidian, M.; Jennrich, R. I., Accleration of the EM Algorithm by using Quasi-Newton Methods, Journal of the Royal Statistical Society B, 59, 3, 569-587 (1997) · Zbl 0889.62042 · doi:10.1111/1467-9868.00083
[26] Jensen, F. V.; Hunter, A.; Parsons, S., Gradient descent training of bayesian networks, Symbolic and Quantitative Approaches to Reasoning and Uncertainty, 190-200 (1999), Heidelberg: Springer, Heidelberg · doi:10.1007/3-540-48747-6_18
[27] Jensen, F. V., Bayesian networks and decision graphs (2001), Heidelberg: Springer, Heidelberg · Zbl 0973.62005
[28] Kersting, K., De Raedt, L.: Bayesian logic programs. In: Cussens, J., Frisch, A. (eds.) Work-in-Progress Reports of the Tenth International Conference on Inductive Logic Programming (ILP 2000) (2000), http://SunSITE.Informatik.RWTH-Aachen.DE/Publications/CEUR-WS/Vol-35/ · Zbl 1006.68504
[29] Kersting, K., De Raedt, L.: Bayesian logic programs. Technical Report 151, University of Freiburg, Institute for Computer Science (submitted) (April 2001) · Zbl 1006.68504
[30] Kersting, K.; De Raedt, L.; Kramer, S.; Getoor, L.; Jensen, D., Interpreting Bayesian Logic Programs, Working Notes of the AAAI-2000 Workshop on Learning Statistical Models from Relational Data (SRL) (2000), Menlo Park: AAAI Press, Menlo Park
[31] Kersting, K.; Gärtner, T.; Boulicaut, J.-F.; Esposito, F.; Giannotti, F.; Pedreschi, D., Fisher Kernels for Logical Sequences, Machine Learning: ECML 2004, 205 (2004), Heidelberg: Springer, Heidelberg · Zbl 1132.68560
[32] Koller, D.; Džeroski, S.; Flach, P. A., Probabilistic relational models, Inductive Logic Programming, 3-13 (1999), Heidelberg: Springer, Heidelberg · doi:10.1007/3-540-48751-4_1
[33] Koller, D., Pfeffer, A.: Learning probabilities for noisy first-order rules. In: Proceedings of the Fifteenth Joint Conference on Artificial Intelligence (IJCAI 1997), Nagoya, Japan, pp. 1316-1321 (1997)
[34] Lam, W., Bacchus, F.: Learning Bayesian belief networks: An approach based on the MDL principle. Computational Intelligence 10(4) (1994)
[35] Langseth, H.; Bangsø, O., Parameter learning in object oriented Bayesian networks, Annals of Mathematics and Artificial Intelligence, 32, 1-2, 221-243 (2001) · Zbl 1314.68261 · doi:10.1023/A:1016769618900
[36] Lauritzen, S. L., The EM algorithm for graphical association models with missing data, Computational Statistics and Data Analysis, 19, 191-201 (1995) · Zbl 0875.62237 · doi:10.1016/0167-9473(93)E0056-A
[37] Lloyd, J. W., Foundations of Logic Programming (1989), Berlin: Springer, Berlin · Zbl 0547.68005
[38] McKachlan, G.J., Krishnan, T.: The EM Algorithm and Extensions. John Eiley & Sons, Inc. (1997) · Zbl 0882.62012
[39] Muggleton, S. H.; Getoor, L.; Jensen, D., Learning stochastic logic programs, Working Notes of the AAAI-2000 Workshop on Learning Statistical Models from Relational Data (SRL) (2000), Menlo Park: AAAI Press, Menlo Park
[40] Ngo, L.; Haddawy, P., Answering queries from context-sensitive probabilistic knowledge bases, Theoretical Computer Science, 171, 147-177 (1997) · Zbl 0874.68280 · doi:10.1016/S0304-3975(96)00128-4
[41] Pearl, J., Reasoning in Intelligent Systems: Networks of Plausible Inference (1991), San Francisco: Morgan Kaufmann, San Francisco
[42] Poole, D., Probabilistic Horn abduction and Bayesian networks, Artificial Intelligence, 64, 81-129 (1993) · Zbl 0792.68176 · doi:10.1016/0004-3702(93)90061-F
[43] Sato, T.; Kameya, Y., Parameter learning of logic programs for symbolic-statistical modeling, Journal of Artificial Intelligence Research, 15, 391-454 (2001) · Zbl 0994.68025
[44] Srinivasan, A.; Muggleton, S.; Bain, M.; Furukawa, K.; Michie, D.; Muggleton, S., The justification of logical theories based on data compression, Machine Intelligence (1994), Oxford: Oxford University Press, Oxford
[45] Sterling, L.; Shapiro, E., The Art of Prolog: Advanced Programming Techniques (1986), Cambridge: MIT Press, Cambridge · Zbl 0605.68002
[46] Taskar, B.; Segal, E.; Koller, D.; Nebel, B., Probabilistic clustering in relational data, Seventeenth International Joint Conference on Artificial Intelligence (IJCAI 2001), 870-887 (2001), San Francisco: Morgan Kaufmann, San Francisco
[47] Xiang, Y.; Wong, S. K.M.; Cercone, N.; Horvitz, E.; Jensen, F. V., Critical remarks on single link search in learning belief networks, Proceedings of the Twelfth Annual Conference on Uncertainty in Artificial Intelligence (UAI 1996), 564-571 (1996), San Francisco: Morgan Kaufmann, San Francisco
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.