×

Flux expulsion with dynamics. (English) Zbl 1382.76289

Summary: In the process of flux expulsion, a magnetic field is expelled from a region of closed streamlines on a \(TR_{m}^{1/3}\) time scale, for magnetic Reynolds number \(R_{m}\gg 1\) (\(T\) being the turnover time of the flow). This classic result applies in the kinematic regime where the flow field is specified independently of the magnetic field. A weak magnetic ’core’ is left at the centre of a closed region of streamlines, and this decays exponentially on the \(TR_{m}^{1/2}\) time scale. The present paper extends these results to the dynamical regime, where there is competition between the process of flux expulsion and the Lorentz force, which suppresses the differential rotation. This competition is studied using a quasi-linear model in which the flow is constrained to be axisymmetric. The magnetic Prandtl number \(R_{m}/R_{e}\) is taken to be small, with \(R_{m}\) large, and a range of initial field strengths \(b_{0}\) is considered. Two scaling laws are proposed and confirmed numerically. For initial magnetic fields below the threshold \(b_{core}=O(UR_{m}^{-1/3})\), flux expulsion operates despite the Lorentz force, cutting through field lines to result in the formation of a central core of magnetic field. Here \(U\) is a velocity scale of the flow and magnetic fields are measured in Alfvén units. For larger initial fields the Lorentz force is dominant and the flow creates Alfvén waves that propagate away. The second threshold is \(b_{dynam}=O(UR_{m}^{-3/4})\), below which the field follows the kinematic evolution and decays rapidly. Between these two thresholds the magnetic field is strong enough to suppress differential rotation, leaving a magnetically controlled core spinning in solid body motion, which then decays slowly on a time scale of order \(TR_{m}\).

MSC:

76W05 Magnetohydrodynamics and electrohydrodynamics
76D17 Viscous vortex flows
76Fxx Turbulence

Software:

DLMF

References:

[1] Bajer, K.1998Flux expulsion by a point vortex. Eur. J. Mech. (B/Fluids)17, 653-664.10.1016/S0997-7546(98)80018-6 · Zbl 0929.76145 · doi:10.1016/S0997-7546(98)80018-6
[2] Bajer, K., Bassom, A. P. & Gilbert, A. D.2001Accelerated diffusion in the centre of a vortex. J. Fluid Mech.437, 395-411; Referred to as BBG in the text.10.1017/S0022112001004232S00221120010042321841799 · Zbl 0981.76023
[3] Bassom, A. P. & Gilbert, A. D.1997Nonlinear equilibration of a dynamo in a smooth helical flow. J. Fluid Mech.343, 375-406.10.1017/S0022112097005880S00221120970058801465161 · Zbl 0898.76097 · doi:10.1017/S0022112097005880
[4] Bernoff, A. J. & Lingevitch, J. F.1994Rapid relaxation of an axisymmetric vortex. Phys. Fluids6, 3717-3723.10.1063/1.868362 · Zbl 0838.76024 · doi:10.1063/1.868362
[5] Cattaneo, F.1994On the effects of a weak magnetic field on turbulent transport. Astrophys. J.434, 200-205.10.1086/174717 · doi:10.1086/174717
[6] Cattaneo, F. & Vainshtein, S. I.1991Suppression of turbulent transport by weak magnetic field. Astrophys. J.376, L21-L24.10.1086/186093 · Zbl 0605.58026 · doi:10.1086/186093
[7] Dritschel, D. G. & McIntyre, M. E.2008Multiple jets as PV staircases: the Phillips effect and the resilience of eddy-transport barriers. J. Atmos. Sci.65, 855-874.10.1175/2007JAS2227.1 · doi:10.1175/2007JAS2227.1
[8] Dritschel, D. G. & Tobias, S. M.2012Two-dimensional magnetohydrodynamic turbulence in the small magnetic Prandtl number limit. J. Fluid Mech.703, 85-98.10.1017/jfm.2012.195S00221120120019542949905 · Zbl 1248.76153 · doi:10.1017/jfm.2012.195
[9] Galloway, D. J., Proctor, M. R. E. & Weiss, N. O.1978Magnetic flux ropes and convection. J. Fluid Mech.87, 243-261.10.1017/S0022112078001573S00221120780015730502935 · Zbl 0378.76077 · doi:10.1017/S0022112078001573
[10] Julien, K., Rubio, A. M., Grooms, I. & Knobloch, E.2012Statistical and physical balances in low Rossby number Rayleigh-Bénard convection. Geophys. Astrophys. Fluid Dyn.106, 392-428.10.1080/03091929.2012.6961092951114 · Zbl 1531.76096 · doi:10.1080/03091929.2012.696109
[11] Keating, S. R. & Diamond, P. H.2008Turbulent resistivity in wavy two-dimensional magnetohydrodynamic turbulence. J. Fluid Mech.595, 173-202.10.1017/S002211200700941XS002211200700941X2381755 · Zbl 1159.76392 · doi:10.1017/S002211200700941X
[12] Keating, S. R., Silvers, L. J. & Diamond, P. H.2008On cross-phase and the quenching of the turbulent diffusion of magnetic fields in two dimensions. Astrophys. J.678, L137-L140.10.1086/588654 · doi:10.1086/588654
[13] Kim, E.-J.2006Consistent theory of turbulent transport in two dimensional magnetohydrodynamics. Phys. Rev. Lett.96, 084504.
[14] Mestel, L. & Weiss, N. O.1986Magnetic fields and non-uniform rotation in stellar radiative zones. Mon. Not. R. Astron. Soc.226, 123-135.10.1093/mnras/226.1.123 · doi:10.1093/mnras/226.1.123
[15] Moffatt, H. K.1978Magnetic Field Generation in Electrically Conducting Fluids. Cambridge University Press.
[16] Moffatt, H. K. & Kamkar, H.1983The time-scale associated with flux expulsion. In Stellar and Planetary Magnetism (ed. A. M.Soward), Gordon and Breach. · Zbl 0497.76095
[17] Olver, F. J. W., Lozier, D. W., Boisvert, R. F. & Clark, C. W.2010NIST Handbook of Mathematical Functions. Cambridge University Press. · Zbl 1198.00002
[18] Parker, R. L.1966Reconnection of lines of force in rotating spheres and cylinders. Proc. R. Soc. Lond. A291, 60-72.10.1098/rspa.1966.0078 · doi:10.1098/rspa.1966.0078
[19] Rhines, P. B. & Young, W. R.1983How rapidly is a passive scalar mixed within closed streamlines?J. Fluid Mech.133, 133-145.10.1017/S0022112083001822S0022112083001822 · Zbl 0576.76088 · doi:10.1017/S0022112083001822
[20] Srinivasan, K. & Young, W. R.2012Zonostrophic instability. J. Atmos. Sci.69, 1633-1656.10.1175/JAS-D-11-0200.1 · doi:10.1175/JAS-D-11-0200.1
[21] Taylor, J. B.1963The magnetohydrodynamics of a rotating fluid and the Earth’s dynamo problem. Proc. R. Soc. Lond. A9, 274-283.10.1098/rspa.1963.0130 · Zbl 0125.43804 · doi:10.1098/rspa.1963.0130
[22] Tobias, S. M. & Cattaneo, F.2008Limited role of spectra in dynamo theory: coherent versus random dynamos. Phys. Rev. Lett.101, 125003.10.1103/PhysRevLett.101.125003 · doi:10.1103/PhysRevLett.101.125003
[23] Tobias, S. M., Dagon, K. & Marston, J. B.2011Astrophysical fluid dynamics via direct statistical simulation. Astrophys. J.727, 127-138.10.1088/0004-637X/727/2/127 · doi:10.1088/0004-637X/727/2/127
[24] Vainshtein, S. I. & Cattaneo, F.1992Nonlinear restrictions on dynamo action. Astrophys. J.393, 165-171.10.1086/171494 · doi:10.1086/171494
[25] Weiss, N. O.1966The expulsion of magnetic flux by eddies. Proc. R. Soc. Lond. A293, 310-328.10.1098/rspa.1966.0173 · doi:10.1098/rspa.1966.0173
[26] Weiss, N. O. & Proctor, M. R. E.2014Magnetoconvection. Cambridge University Press.10.1017/CBO9780511667459 · Zbl 1331.85001 · doi:10.1017/CBO9780511667459
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.