×

Modeling the magnetic interactions between paramagnetic beads in magnetorheological fluids. (English) Zbl 1161.76059

The authors develop a method to estimate the magnetic forces between paramagnetic particles that is applicable for systems of thousands of particles. They present and describe a finite-dipole model which resolves the many-body dipole interaction in MR fluids. In this model, the induced magnetization of a particle is represented as a localized Gaussian distribution of current. The associated computational effort is shown to scale as \(O(N)\). They modify the mutual dipole and the finite dipole model to include locally higher-order multipole terms through a pairwise interaction scheme. So they use the exact solution for two paramagnetic particles placed in a locally uniform magnetic field. The inclusion of higher order multipoles may be adapted to more situations.

MSC:

76W05 Magnetohydrodynamics and electrohydrodynamics
Full Text: DOI

References:

[1] Klingenberg, D., Magnetorheology: applications and challenges, AIChE J., 47, 246-249 (2001)
[2] Rosensweig, R., Ferrohydrodynamics (1997), Dover Publications, Inc.
[3] Doyle, P.; Bibette, J.; Bancaud, A.; Viovy, J.-L., Self-assembled magnetic matrices for DNA separation chips, Science, 295, 2237 (2002)
[4] Rida, A.; Gijs, M., Manipulation of self-assembled structures of magnetic beads for microfluidic mixing and assaying, Anal. Chem., 76, 6239-6246 (2004)
[5] Bleil, S.; Marr, D.; Bechinger, C., Field-mediated self-assembly and actuation of highly parallel microfluidic devices, Appl. Phys. Lett., 88, 263515 (2006)
[6] Goubault, C.; Jop, P.; Fermigier, M.; Baudry, J.; Bertrand, E.; Bibette, J., Flexible magnetic filaments as micromechanical sensors, Phys. Rev. Lett., 91, 26, 260802 (2003)
[7] Biswal, S.; Gast, A., Rotational dynamics of semiflexible paramagnetic particle chains, Phys. Rev. E, 69, 041406 (2004)
[8] Dreyfus, R.; Baudry, J.; Roper, M. L.; Fermigier, M.; Stone, H.; Bibette, J., Microscopic artificial swimmers, Nature, 437, 862-865 (2005)
[9] Keaveny, E.; Maxey, M., Spiral swimming of an artificial micro-swimmer, J. Fluid Mech., 598, 293-319 (2008) · Zbl 1151.76647
[10] Fan, Z.; Kumar, R., Biological applications of paramagnetic particles in chips, (Chang, J.; Kricka, L., Biochip Technology (2001), Hardwood Academic Publishers: Hardwood Academic Publishers Philadelphia, PA), 291-307
[11] Helseth, L., Self-assembly of colloidal pyramids in magnetic fields, Langmuir, 21, 7276-7279 (2005)
[12] Klingenberg, D.; Ulicny, J.; Golden, M., Mason numbers for magnetorheology, J. Rheol., 51, 5, 883-893 (2007)
[13] Jackson, J., Classical Electrodynamics (1999), John Wiley and Sons, Inc. · Zbl 0920.00012
[14] Stratton, J., Electromagnetic Theory (1941), McGraw-Hill Book Company, Inc. · JFM 67.1119.01
[15] Clercx, H.; Bossis, G., Many-body electrostatic interactions in electrorheological fluids, Phys. Rev. E, 48, 4, 2721-2738 (1993)
[16] Melle, S.; Martin, J., Chain model of a magnetorheological suspension in a rotating field, J. Chem. Phys., 118, 21, 9875-9881 (2003)
[17] Melle, S.; Calderon, O.; Rubio, M.; Fuller, G., Microstructure evolution in magnetorheological suspensions governed by Mason number, Phys. Rev. E, 68, 041503 (2003)
[18] Climent, E.; Maxey, M.; Karniadakis, G., Dynamics of self-assembled chaining in magnetorheological fluids, Langmuir, 20, 2, 507-513 (2004)
[19] Klingenberg, D.; van Swol, F.; Zukoski, C., The small shear rate response of electrorheological suspensions. I. Simulation in the point-dipole limit, J. Chem. Phys., 94, 9, 6160-6169 (1991)
[20] Ly, H.; Reitich, F.; Jolly, M.; Banks, H.; Ito, K., Simulations of particle dynamics in magnetorheological fluids, J. Comput. Phys., 155, 160-177 (1999) · Zbl 0953.76063
[21] Greengard, L.; Rokhlin, V., A fast algorithm for particle simulations, J. Comput. Phys., 73, 325-348 (1987) · Zbl 0629.65005
[22] Klingenberg, D. J.; IV, C. F.Z., Studies on the steady-shear behavior of electrorheological suspensions, Langmuir, 6, 15-24 (1990)
[23] Klingenberg, D.; van Swol, F.; Zukoski, C., The small shear rate response of electrorheological suspensions. II. Extension beyond the point-dipole limit, J. Chem. Phys., 94, 9, 6170-6178 (1991)
[24] Bonnecaze, R.; Brady, J., A method for determining the effective conductivity of dispersions of particles, Proc. R. Soc. Lond. A, 430, 285-313 (1990) · Zbl 0703.76085
[25] Bonnecaze, R.; Brady, J., The effective conductivity of random suspensions of spherical particles, Proc. R. Soc. Lond. A, 432, 445-465 (1991)
[26] Bonnecaze, R.; Brady, J., Dynamic simulation of an electrorheological fluid, J. Chem. Phys., 96, 3, 2183-2202 (1992)
[27] Namias, V., Application of the Dirac delta function to electric current and magnetic multipole distributions, Am. J. Phys., 47, 9, 803-806 (1979)
[28] Maxey, M.; Patel, B., Localized force representation for particles sedimenting in Stokes flow, Int. J. Multiphase Flow, 27, 1603-1626 (2001) · Zbl 1137.76676
[29] Lomholt, S.; Maxey, M., Force-coupling method for particulate two-phase flow: Stokes flow, J. Comput. Phys., 184, 381-405 (2003) · Zbl 1047.76100
[30] Jeffrey, D., Conduction through a random suspension of spheres, Proc. R. Soc. Lond. A, 335, 355-367 (1973)
[31] Allen, M.; Tildesley, D., Computer Simulation of Liquids (1994), Clarendon Press · Zbl 0703.68099
[32] Martin, J.; Hill, K.; Tigges, C., Magnetic-field-induced optical transmittance in colloidal suspensions, Phys. Rev. E, 59, 5, 5676-5692 (1999)
[33] Darden, T.; York, D.; Pederson, L., Particle mesh Ewald – an Nlog(N) method for Ewald sums in large systems, J. Chem. Phys., 98, 12, 10089-10092 (1993)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.