×

On the two-variables main conjecture for extensions of imaginary quadratic fields. (English) Zbl 1294.11197

To every abelian extension \(K\) of an imaginary quadratic field \(k\) and to every prime number \(p\) one may attach two Iwasawa modules: the projective limit of \(p\)-parts of class groups in the doubly-infinite tower \(K_\infty\) which is obtained by composing \(K\) with the unique \(\mathbb Z_p^2\)-extension of \(k\), and the projective limit of the quotient of units modulo elliptic units in the same tower. The 2-variable main conjecture then says that these two Iwasawa modules should have the same characteristic series. This main conjecture was proved, under some restrictions, in the ground-breaking paper of K. Rubin [Invent. Math. 103, No. 1, 25–68 (1991; Zbl 0737.11030)], using the machinery of Euler systems, which comes from work of Kolyvagin and Thaine.
Subsequently some of the restrictions were removed. One of the remaining restrictions says that \(p\) should not divide the degree \([K:k]\). This hypothesis is now eliminated in the paper under review, which however needs to make the assumptions \(p\geq 5\) and \(p\) splits in the imaginary quadratic field \(k\). The ingenuous technique of Euler systems is used in many papers on the main conjecture, and the present paper is no exception. An important technical point in working with primes \(p\) that divide \([K:k]\) seems to be the following: One proves the desired equalities of characteristic series in a \(\mathbb Q\)-tensored version, that is, only up to a priori unknown \(p\)-power factors, but one is able to remove them in the end just by showing that there are none of these factors on either side. This comes under the general label “\(\mu=0\)”. The author is able to draw on many results that were established previously by K. Rubin [Invent. Math. 93, No. 3, 701–713 (1988; Zbl 0673.12004)], R. Gillard [J. Reine Angew. Math. 358, 76–91 (1985; Zbl 0551.12011)] and others.
The Main Conjecture has been crucial in the theory of elliptic curves with CM, so it is nice to see that another of the few remaining cases is now settled.

MSC:

11R23 Iwasawa theory
11R65 Class groups and Picard groups of orders
11G16 Elliptic and modular units

References:

[1] W. Bley, Equivariant Tamagawa number conjecture for abelian extensions of a quadratic imaginary field, Doc. Math. 11 (2006), 73-118. · Zbl 1178.11070
[2] E. de Shalit, Iwasawa theory of elliptic curves with complex multiplication. \(p\)-adic \(L\) functions, Perspect. Math. 3, Academic Press, Inc., Boston, MA, 1987. · Zbl 0674.12004
[3] R. Gillard, Fonctions \(L\) \(p\)-adiques des corps quadratiques imaginaires et de leurs extensions abéliennes, J. Reine Angew. Math. 358 (1985), 76-91. · Zbl 0551.12011 · doi:10.1515/crll.1985.358.76
[4] R. Greenberg, On the structure of certain Galois groups, Invent. Math. 47 (1978), 85-99. · Zbl 0403.12004 · doi:10.1007/BF01609481
[5] C. Greither, Class groups of abelian fields, and the main conjecture, Ann. Inst. Fourier (Grenoble) 42 (1992), 445-499. · Zbl 0729.11053 · doi:10.5802/aif.1299
[6] K. Iwasawa, On \({\boldsymbol Z}_l\)-extensions of algebraic number fields, Ann. of Math. 98 (1973), 246-326. · Zbl 0285.12008 · doi:10.2307/1970784
[7] A. Jilali and H. Oukhaba, Stark units in \({\boldsymbol Z}_p\)-extensions, Funct. Approx. Comment. Math. 45 (2011), part I, 105-124. · Zbl 1258.11092 · doi:10.7169/facm/1317045236
[8] J. Johnson-Leung and G. Kings, On the equivariant main conjecture for imaginary quadratic fields, J. Reine Angew. Math. 653 (2011), 75-114. · Zbl 1230.11135 · doi:10.1515/CRELLE.2011.020
[9] H. Oukhaba, On Iwasawa theory of elliptic units and 2-ideal class groups, J. Ramanujan Math. Soc. 27 (2012), no. 3, 255-373. · Zbl 1272.11118
[10] H. Oukhaba and S. Viguié, The Gras conjecture in function fields by Euler systems, Bull. Lond. Math. Soc. 43 (2011), 523-535. · Zbl 1248.11091 · doi:10.1112/blms/bdq119
[11] B. Perrin-Riou, Arithmétique des courbes elliptiques et théorie d’Iwasawa, Supplément au Bulletin de la société mathématique de France 112 n\(^{\circ}4\) Mém. Soc. Math. France (N.S.) No. 17 (1984), 130 pp.
[12] G. Robert, Unités elliptiques, Bull. Soc. Math. France No 36, Bull. Soc. Math. France, Tome 101, Société Mathématique de France, Paris, 1973.
[13] G. Robert, Unités de Stark comme unités elliptiques, Prépublication de l’Institut Fourier 143, 1989.
[14] G. Robert, Concernant la relation de distribution satisfaite par la fonction \(\varphi\) associée à un réseau complexe, Invent. Math. 100 (1990), 231-257. · Zbl 0729.11029 · doi:10.1007/BF01231186
[15] K. Rubin, On the main conjecture of Iwasawa theory for imaginary quadratic fields, Invent. Math. 93 (1988), 701-713. · Zbl 0673.12004 · doi:10.1007/BF01410205
[16] K. Rubin, The “main conjectures” of Iwasawa theory for imaginary quadratic fields, Invent. Math. 103 (1991), 25-68. · Zbl 0737.11030 · doi:10.1007/BF01239508
[17] K. Rubin, More “main conjectures” for imaginary quadratic fields. Elliptic curves and related topics, 23-28, CRM Proc. Lecture Notes 4, Amer. Math. Soc., Providence, RI, 1994. · Zbl 0809.11066
[18] J. Tate, Les conjectures de Stark sur les fonctions \(\mathrm{L}\) d’Artin en \(s=0\), Lecture notes edited by Dominique Bernardi and Norbert Schappacher, Progr. Math. 47, Birkhäuser Boston, Inc., Boston, MA, 1984. · Zbl 0545.12009
[19] S. Viguié, On the classical main conjecture for imaginary quadratic fields, to appear in JP J. Algebra Number Theory Appl. · Zbl 1294.11197
[20] S. Viguié, Global units modulo elliptic units and ideal class groups, Int. J. Number Theory 8 (2012), 569-588. · Zbl 1268.11083 · doi:10.1142/S1793042112500315
[21] J.-P. Wintenberger, Structure galoisienne de limites projectives d’unités locales, Compositio Math. 42 (1980/81), 89-103. · Zbl 0414.12008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.