×

The equivariant Tamagawa number conjecture for abelian extensions of imaginary quadratic fields. (English) Zbl 1534.11132

Let \(K/k\) be a finite Galois extension of number fields and let \(G=\mathrm{Gal}(K/k)\). The equivariant Tamagawa number conjecture (eTNC) for the pair \((h^{0}(\mathrm{Spec}(K)),\mathbb{Z}[G])\) relates the leading terms at \(s=0\) of Artin \(L\)-functions attached to \(K/k\) to certain natural arithmetic invariants, and may be viewed as an equivariant refinement of the analytic class number formula at \(s=0\). It implies a number of other conjectures involving values or leading terms of Artin \(L\)-functions at \(s=0\). We abbreviate the eTNC for the pair \((h^{0}(\mathrm{Spec}(K)),\mathbb{Z}[G])\) to \(\mathrm{eTNC}(K/k)\), and for a rational prime \(p\), we write \(\mathrm{eTNC}(K/k)_{p}\) for its so-called \(p\)-part. Then \(\mathrm{eTNC}(K/k)\) holds if and only if \(\mathrm{eTNC}(K/k)_{p}\) holds for all \(p\).
We henceforth specialise to the case in which \(G\) is abelian. D. Burns and C. Greither [Invent. Math. 153, No. 2, 303–359 (2003; Zbl 1142.11076)], together with additional arguments for the \(2\)-part by M. Flach, [J. Reine Angew. Math. 661, 1–36 (2011; Zbl 1242.11083)], proved that \(\mathrm{eTNC}(K/k)\) holds in the case that \(k=\mathbb{Q}\). W. Bley, [Doc. Math. 11, 73–118 (2006; Zbl 1178.11070)] adapted this strategy to prove that if \(k\) is an imaginary quadratic field and \(p\) is an odd prime that splits in \(k\) and does not divide the class number of \(k\), then \(\mathrm{eTNC}(K/k)_{p}\) holds. The main result of the article under review improves this last result by significantly weakening the assumptions on \(p\), as described below.
In D. Burns et al., [Algebra Number Theory 11, No. 7, 1527–1571 (2017; Zbl 1455.11158)], the authors extended the aforementioned methods of Burns and Greither to arbitrary abelian extensions. Roughly speaking, their strategy is as follows (we suppress some technical details and hypotheses). Fix a prime \(p\) and a finite abelian extension \(K/k\). Let \(k_{\infty}/k\) be a \(\mathbb{Z}_{p}\)-extension and let \(K_{\infty} = Kk_{\infty}\). Suppose that each of the following conjectures (all of which are stated in loc.cit.) holds for \(K_{\infty}/k\).
(i)
the higher-rank Iwasawa main conjecture;
(ii)
the Iwasawa-theoretic Mazur-Rubin-Sano conjecture; and
(iii)
Gross’ finiteness conjecture (also called condition (F)).
Then \(\mathrm{eTNC}(K/k)_{p}\) holds.
In the article under review, the authors apply this strategy to prove the following result. Let \(p\) be a prime number, let \(k\) be an imaginary quadratic field, and let \(K/k\) be a finite abelian extension. Then \(\mathrm{eTNC}(K/k)_{p}\) holds whenever
(\(\star\))
either \(p \nmid [K:k]\) or the \(\mu\)-invariant of a certain Iwasawa module vanishes.
We remark that the \(\mu\)-invariant is known to vanish whenever \(p\) splits in \(k\) or \([K:k]\) is a power of \(p\), and so the result is unconditional in these cases.
The idea of the proof is as follows. The condition (\(\star\)) is needed to show that (i) the higher-rank Iwasawa main conjecture holds for an appropriate extension \(K_{\infty}/k\). Both (ii) the Iwasawa-theoretic Mazur-Rubin-Sano conjecture and (iii) condition (F) are proven for wide classes of extensions \(K_{\infty}/k\). From these results, the authors show that there exists a choice of \(k_{\infty}\) such that the all three conjectures (i), (ii) and (iii) hold for \(Kk_{\infty}/k\), and then apply the above strategy to show that \(\mathrm{eTNC}(K/k)_{p}\) holds. We remark that once this is established, they are then able to deduce that the Iwasawa-theoretic Mazur-Rubin-Sano conjecture in fact holds unconditionally for all extensions \(K_{\infty}/k\) when \(k\) is imaginary quadratic.

MSC:

11R42 Zeta functions and \(L\)-functions of number fields
11R23 Iwasawa theory
11R29 Class numbers, class groups, discriminants

References:

[1] W. Bley, ’Elliptic curves and module structure over Hopf orders’ and ’The conjecture of Chinburg-Stark for abelian extensions of quadratic imaginary fields’. Habilitationsschrift, Universität Augsburg, 1998
[2] W. Bley, Wild Euler systems of elliptic units and the equivariant Tamagawa number conjecture. J. Reine Angew. Math. 577 (2004), 117-146 Zbl 1056.11035 MR 2108215 · Zbl 1056.11035 · doi:10.1515/crll.2004.2004.577.117
[3] W. Bley, Equivariant Tamagawa number conjecture for abelian extensions of a quadratic ima-ginary field. Doc. Math. 11 (2006), 73-118 Zbl 1178.11070 MR 2226270 eTNC for imaginary quadratic fields 415 · Zbl 1178.11070 · doi:10.4171/DM/205
[4] W. Bley and M. Hofer, Construction of elliptic p-units. In Development of Iwasawa theory-the centennial of K. Iwasawa’s birth, pp. 79-111, Adv. Stud. Pure Math. 86, Mathematical Society of Japan, Tokyo, 2020 Zbl 1469.11187 MR 4385080 · Zbl 1469.11187 · doi:10.2969/aspm/08610079
[5] S. Bloch and K. Kato, L-functions and Tamagawa numbers of motives. In The Grothendieck Festschrift, Vol. I, pp. 333-400, Progr. Math. 86, Birkhäuser, Boston, MA, 1990 · Zbl 0768.14001
[6] N. Bourbaki, Algebra II. Chapters 4-7. Elem. Math. (Berlin), Springer, Berlin, 2003 Zbl 1017.12001 MR 1994218 · doi:10.1007/978-3-642-61698-3
[7] A. Brumer, On the units of algebraic number fields. Mathematika 14 (1967), 121-124 Zbl 0171.01105 MR 220694 · Zbl 0171.01105 · doi:10.1112/S0025579300003703
[8] D. Bullach, D. Burns, A. Daoud, and S. Seo, Dirichlet L-series at s D 0 and the scarcity of Euler systems. 2021, arXiv:2111.14689
[9] D. Bullach and A. Daoud, On universal norms for p-adic representations in higher-rank Iwas-awa theory. Acta Arith. 201 (2021), no. 1, 63-108 Zbl 1483.11106 MR 4336305 · Zbl 1483.11106 · doi:10.4064/aa200826-26-5
[10] D. Burns, Equivariant Tamagawa numbers and Galois module theory. I. Compos. Math. 129 (2001), no. 2, 203-237 Zbl 1014.11070 MR 1863302 · Zbl 1014.11070 · doi:10.1023/A:1014502826745
[11] D. Burns, Congruences between derivatives of abelian L-functions at s D 0. Invent. Math. 169 (2007), no. 3, 451-499 Zbl 1133.11063 MR 2336038 · Zbl 1133.11063 · doi:10.1007/s00222-007-0052-3
[12] D. Burns, A. Daoud, T. Sano, and S. Seo, On Euler systems for the multiplicative group over general number fields. Publ. Mat. 67 (2023), no. 1, 89-126 Zbl 07658534 MR 4522931 · Zbl 1523.11207 · doi:10.5565/publmat6712302
[13] D. Burns and M. Flach, Tamagawa numbers for motives with (non-commutative) coefficients. Doc. Math. 6 (2001), 501-570 Zbl 1052.11077 MR 1884523 · Zbl 1052.11077 · doi:10.4171/DM/113
[14] D. Burns and C. Greither, On the equivariant Tamagawa number conjecture for Tate motives. Invent. Math. 153 (2003), no. 2, 303-359 Zbl 1142.11076 MR 1992015 · Zbl 1142.11076 · doi:10.1007/s00222-003-0291-x
[15] D. Burns, M. Kurihara, and T. Sano, On zeta elements for G m . Doc. Math. 21 (2016), 555-626 Zbl 1407.11133 MR 3522250 · Zbl 1407.11133 · doi:10.4171/DM/540
[16] D. Burns, M. Kurihara, and T. Sano, On Iwasawa theory, zeta elements for G m , and the equivariant Tamagawa number conjecture. Algebra Number Theory 11 (2017), no. 7, 1527-1571 Zbl 1455.11158 MR 3697147 · Zbl 1455.11158 · doi:10.2140/ant.2017.11.1527
[17] D. Burns, M. Kurihara, and T. Sano, On derivatives of Kato’s Euler system for elliptic curves. 2019, arXiv:1910.07404
[18] D. Burns and T. Sano, On the theory of higher rank Euler, Kolyvagin and Stark systems. Int. Math. Res. Not. IMRN 2021 (2021), no. 13, 10118-10206 Zbl 1496.11132 MR 4283576 · Zbl 1496.11132 · doi:10.1093/imrn/rnz103
[19] K. Büyükboduk and R. Sakamoto, On the non-critical exceptional zeros of Katz p-adic L-functions for CM fields. Adv. Math. 406 (2022), Paper No. 108478, 54 Zbl 07567786 MR 4438060 · Zbl 1504.11071 · doi:10.1016/j.aim.2022.108478
[20] T. Chinburg, Exact sequences and Galois module structure. Ann. of Math. (2) 121 (1985), no. 2, 351-376 Zbl 0567.12010 MR 786352 · Zbl 0567.12010 · doi:10.2307/1971177
[21] J. Coates and R. Sujatha, Cyclotomic fields and zeta values. Springer Monogr. Math., Springer, Berlin, 2006 Zbl 1100.11002 MR 2256969 · Zbl 1100.11002 · doi:10.1007/978-3-540-33069-1
[22] A. A. Cuoco, The growth of Iwasawa invariants in a family. Compos. Math. 41 (1980), no. 3, 415-437 Zbl 0415.12002 MR 589090 · Zbl 0415.12002
[23] C. W. Curtis and I. Reiner, Methods of representation theory. Vol. I. With applications to finite groups and orders. Pure Appl. Math., John Wiley & Sons, New York, 1981 Zbl 0469.20001 MR 632548 · Zbl 0469.20001
[24] H. Darmon, Thaine’s method for circular units and a conjecture of Gross. Canad. J. Math. 47 (1995), no. 2, 302-317 Zbl 0844.11071 MR 1335080 · Zbl 0844.11071 · doi:10.4153/CJM-1995-016-6
[25] D. Bullach and M. Hofer 416
[26] S. Dasgupta, M. Kakde, and K. Ventullo, On the Gross-Stark conjecture. Ann. of Math. (2) 188 (2018), no. 3, 833-870 Zbl 1416.11160 MR 3866887 · Zbl 1416.11160 · doi:10.4007/annals.2018.188.3.3
[27] S. Dasgupta and M. Spieß, Partial zeta values, Gross’s tower of fields conjecture, and Gross-Stark units. J. Eur. Math. Soc. (JEMS) 20 (2018), no. 11, 2643-2683 Zbl 1444.11227 MR 3861805 · Zbl 1444.11227 · doi:10.4171/JEMS/821
[28] E. de Shalit, Iwasawa theory of elliptic curves with complex multiplication. Perspect. Math. 3, Academic Press, Boston, MA, 1987 Zbl 0674.12004 MR 917944 · Zbl 0674.12004
[29] P. Deligne and K. A. Ribet, Values of abelian L-functions at negative integers over totally real fields. Invent. Math. 59 (1980), no. 3, 227-286 Zbl 0434.12009 MR 579702 · Zbl 0434.12009 · doi:10.1007/BF01453237
[30] M. Emsalem, Sur les ideaux dont l’image par l’application d’Artin dans une Z p -extension est triviale. J. Reine Angew. Math. 382 (1987), 181-198 Zbl 0621.12008 MR 921171 · Zbl 0621.12008 · doi:10.1515/crll.1987.382.181
[31] B. Ferrero and L. C. Washington, The Iwasawa invariant p vanishes for abelian number fields. Ann. of Math. (2) 109 (1979), no. 2, 377-395 Zbl 0443.12001 MR 528968 · Zbl 0443.12001 · doi:10.2307/1971116
[32] M. Flach, Iwasawa theory and motivic L-functions. Pure Appl. Math. Q. 5 (2009), no. 1, 255-294 Zbl 1179.11036 MR 2520461 · Zbl 1179.11036 · doi:10.4310/PAMQ.2009.v5.n1.a8
[33] M. Flach, On the cyclotomic main conjecture for the prime 2. J. Reine Angew. Math. 661 (2011), 1-36 Zbl 1242.11083 MR 2863902 · Zbl 1242.11083 · doi:10.1515/CRELLE.2011.082
[34] J.-M. Fontaine and B. Perrin-Riou, Autour des conjectures de Bloch et Kato: cohomologie galoisienne et valeurs de fonctions L. In Motives (Seattle, WA, 1991), pp. 599-706, Proc. Sympos. Pure Math. 55, American Mathematical Society, Providence, RI, 1994 · Zbl 0821.14013 · doi:10.1090/pspum/055.1
[35] R. Gillard, Fonctions L p-adiques des corps quadratiques imaginaires et de leurs extensions abéliennes. J. Reine Angew. Math. 358 (1985), 76-91 Zbl 0551.12011 MR 797675 · Zbl 0551.12011 · doi:10.1515/crll.1985.358.76
[36] R. Greenberg, On a certain l-adic representation. Invent. Math. 21 (1973), 117-124 Zbl 0268.12004 MR 335468 · Zbl 0268.12004 · doi:10.1007/BF01389691
[37] B. H. Gross, p-adic L-series at s D 0. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 28 (1981), no. 3, 979-994 (1982) Zbl 0507.12010 MR 656068 · Zbl 0507.12010
[38] B. H. Gross, On the values of abelian L-functions at s D 0. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 35 (1988), no. 1, 177-197 Zbl 0681.12005 MR 931448 · Zbl 0681.12005
[39] M. Hofer, Elliptic p-units and the equivariant Tamagawa Number Conjecture. Ph.D. thesis, Ludwig-Maximilians-Universität München, 2018
[40] M. Hofer and S. Kleine, On two conjectures of Gross for large vanishing orders. Monatsh. Math. 197 (2022), no. 1, 85-109 Zbl 07463839 MR 4368632 · Zbl 1505.11142 · doi:10.1007/s00605-021-01555-3
[41] A. Huber and G. Kings, Bloch-Kato conjecture and Main Conjecture of Iwasawa theory for Dirichlet characters. Duke Math. J. 119 (2003), 393-464 Zbl 1044.11095 MR 2002643 · Zbl 1044.11095 · doi:10.1215/S0012-7094-03-11931-6
[42] K. Iwasawa, On the -invariants of Z‘-extensions. In Number theory, algebraic geometry and commutative algebra, in honor of Yasuo Akizuki, pp. 1-11, Kinokuniya, Tokyo, 1973 · Zbl 0281.12005
[43] J.-F. Jaulent and J. W. Sands, Sur quelques modules d’Iwasawa semi-simples. Compos. Math. 99 (1995), no. 3, 325-341 Zbl 0869.11084 MR 1361743 · Zbl 0869.11084
[44] J. Johnson-Leung and G. Kings, On the equivariant main conjecture for imaginary quadratic fields. J. Reine Angew. Math. 653 (2011), 75-114 Zbl 1230.11135 MR 2794626 · Zbl 1230.11135 · doi:10.1515/CRELLE.2011.020
[45] K. Kato, Iwasawa theory and p-adic Hodge theory. Kodai Math. J. 16 (1993), no. 1, 1-31 Zbl 0798.11050 MR 1207986 · Zbl 0798.11050 · doi:10.2996/kmj/1138039701
[46] K. Kato, Lectures on the approach to Iwasawa theory for Hasse-Weil L-functions via B dR . I. In Arithmetic algebraic geometry (Trento, 1991), pp. 50-163, Lecture Notes in Math. 1553, Springer, Berlin, 1993 Zbl 0815.11051 MR 1338860 eTNC for imaginary quadratic fields 417 · doi:10.1007/BFb0084729
[47] G. Kings, The equivariant Tamagawa number conjecture and the Birch-Swinnerton-Dyer con-jecture. In Arithmetic of L-functions, pp. 315-349, IAS/Park City Math. Ser. 18, American Mathematical Society, Providence, RI, 2011 Zbl 1277.11073 MR 2882695 · Zbl 1277.11073 · doi:10.1090/pcms/018/12
[48] H. Kisilevsky, Some nonsemisimple Iwasawa modules. Compos. Math. 49 (1983), no. 3, 399-404 Zbl 0517.12004 MR 707180 · Zbl 0517.12004
[49] S. Kleine, Local behavior of Iwasawa’s invariants. Int. J. Number Theory 13 (2017), no. 4, 1013-1036 Zbl 1371.11143 MR 3627696 · Zbl 1371.11143 · doi:10.1142/S1793042117500543
[50] S. Kleine, T -ranks of Iwasawa modules. J. Number Theory 196 (2019), 61-86 Zbl 1467.11103 MR 3906468 · Zbl 1467.11103 · doi:10.1016/j.jnt.2018.09.022
[51] M. Kolster, An idelic approach to the wild kernel. Invent. Math. 103 (1991), no. 1, 9-24 Zbl 0724.11056 MR 1079838 · Zbl 0724.11056 · doi:10.1007/BF01239507
[52] L. V. Kuz’min, The Tate module for algebraic number fields. Math. USSR, Izv. 6 (1972), no. 2, 263-321 Zbl 0257.12003 · Zbl 0231.12013
[53] A. Maksoud, On generalized Iwasawa main conjectures and p-adic Stark conjectures for Artin motives. 2021, arXiv:2103.06864
[54] A. Maksoud, On Leopoldt’s and Gross’s defects for Artin representations. 2022, arXiv:2201.08203v1
[55] B. Mazur and K. Rubin, Refined class number formulas for G m . J. Théor. Nombres Bordeaux 28 (2016), no. 1, 185-211 Zbl 1414.11155 MR 3464617 · Zbl 1414.11155 · doi:10.5802/jtnb.934
[56] B. Mazur and A. Wiles, Class fields of abelian extensions of Q. Invent. Math. 76 (1984), no. 2, 179-330 Zbl 0545.12005 MR 742853 · Zbl 0545.12005 · doi:10.1007/BF01388599
[57] J. Neukirch, A. Schmidt, and K. Wingberg, Cohomology of number fields. 2nd edn., Grund-lehren Math. Wiss. 323, Springer, Berlin, 2008 Zbl 1136.11001 MR 2392026 · doi:10.1007/978-3-540-37889-1
[58] H. Oukhaba and S. Viguié, On the -invariant of Katz p-adic L-functions attached to imagin-ary quadratic fields. Forum Math. 28 (2016), no. 3, 507-525 Zbl 1410.11063 MR 3510827 · Zbl 1410.11063 · doi:10.1515/forum-2013-0194
[59] G. Robert, La racine 12-ième canonique de .L/ OELWL=.L/ . In Séminaire de Théorie des Nombres, Paris, 1989-90, pp. 209-232, Progr. Math. 102, Birkhäuser, Boston, MA, 1992 · Zbl 0751.11025 · doi:10.1007/978-1-4757-4269-5_15
[60] K. Rubin, On the main conjecture of Iwasawa theory for imaginary quadratic fields. Invent. Math. 93 (1988), no. 3, 701-713 Zbl 0673.12004 MR 952288 · Zbl 0673.12004 · doi:10.1007/BF01410205
[61] K. Rubin, The “main conjectures” of Iwasawa theory for imaginary quadratic fields. Invent. Math. 103 (1991), no. 1, 25-68 Zbl 0737.11030 MR 1079839 · Zbl 0737.11030 · doi:10.1007/BF01239508
[62] K. Rubin, More “main conjectures” for imaginary quadratic fields. In Elliptic curves and related topics, pp. 23-28, CRM Proc. Lecture Notes 4, American Mathematical Society, Providence, RI, 1994 Zbl 0809.11066 MR 1260952 · Zbl 0809.11066 · doi:10.1090/crmp/004/02
[63] K. Rubin, A Stark conjecture “over Z” for abelian L-functions with multiple zeros. Ann. Inst. Fourier (Grenoble) 46 (1996), no. 1, 33-62 Zbl 0834.11044 MR 1385509 · Zbl 0834.11044 · doi:10.5802/aif.1505
[64] R. Sakamoto, A higher rank Euler system for G m over a totally real field. Amer. J. Math. 145 (2023), no. 1, 65-108 Zbl 07653691 MR 4545843 · Zbl 1525.11132 · doi:10.1353/ajm.2023.0001
[65] T. Sano, Refined abelian Stark conjectures and the equivariant leading term conjecture of Burns. Compos. Math. 150 (2014), no. 11, 1809-1835 Zbl 1311.11108 MR 3279258 · Zbl 1311.11108 · doi:10.1112/S0010437X14007416
[66] T. Sano, On a conjecture for Rubin-Stark elements in a special case. Tokyo J. Math. 38 (2015), no. 2, 459-476 Zbl 1377.11117 MR 3448867 · Zbl 1377.11117 · doi:10.3836/tjm/1452806050
[67] D. Solomon, On a construction of p-units in abelian fields. Invent. Math. 109 (1992), no. 2, 329-350 Zbl 0772.11043 MR 1172694 · Zbl 0772.11043 · doi:10.1007/BF01232030
[68] J. Tate, Les conjectures de Stark sur les fonctions L d’Artin en s D 0. Progr. Math. 47, Birkhäuser, Boston, MA, 1984 Zbl 0545.12009 MR 782485 · Zbl 0545.12009
[69] S. Viguié, On the two-variables main conjecture for extensions of imaginary quadratic fields. Tohoku Math. J. (2) 65 (2013), no. 3, 441-465 Zbl 1294.11197 MR 3102544 · Zbl 1294.11197 · doi:10.2748/tmj/1378991025
[70] L. C. Washington, Introduction to cyclotomic fields. 2nd edn., Grad. Texts in Math. 83, Springer, New York, 1997 Zbl 0966.11047 MR 1421575 · Zbl 0966.11047 · doi:10.1007/978-1-4612-1934-7
[71] Dominik Bullach Department of Mathematics, King’s College London, London WC2R 2LS, UK;
[72] Martin Hofer Mathematisches Institut, Ludwig-Maximilians-Universität München, Theresienstraße 39, 80333
[73] München, Germany; current address: Kompetenzzentrum Krisenfrüherkennung, Universität der Bundeswehr München, Werner-Heisenberg-Weg 39, 85577 Neubiberg, Germany; martin.hofer@unibw.de
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.