×

Approximation by max-product sampling Kantorovich operators with generalized kernels. (English) Zbl 1464.41004

Authors’ abstract: In a recent paper, for max-product sampling operators based on general kernels with bounded generalized absolute moments, we have obtained several pointwise and uniform convergence properties on bounded intervals or on the whole real axis, including a Jackson-type estimate in terms of the first uniform modulus of continuity. In this paper, first, we prove that for the Kantorovich variants of these max-product sampling operators, under the same assumptions on the kernels, these convergence properties remain valid. Here, we also establish the \(L_p\) convergence, and quantitative estimates with respect to the \(L_p\) norm, \(K\)-functionals and \(L_p\)-modulus of continuity as well. The results are tested on several examples of kernels and possible extensions to higher dimensions are suggested.

MSC:

41A25 Rate of convergence, degree of approximation
41A05 Interpolation in approximation theory
41A30 Approximation by other special function classes
47A58 Linear operator approximation theory
Full Text: DOI

References:

[1] Aleskeev, V. G., Jackson and Jackson-Vallée Poussin-type kernels and their probability applications, Theory Probab. Appl.41(1) (1996) 137-195.
[2] Allasia, G., Cavoretto, R. and De Rossi, A., A class of spline functions for landmark-based image registration, Math. Methods Appl. Sci.35 (2012) 923-934. · Zbl 1256.94009
[3] Angeloni, L., Costarelli, D. and Vinti, G., A characterization of the convergence in variation for the generalized sampling series, Ann. Acad. Sci. Fenn. Math.43 (2018) 755-767. · Zbl 1405.41010
[4] Asdrubali, F., Baldinelli, G., Bianchi, F., Costarelli, D., Rotili, A., Seracini, M. and Vinti, G., Detection of thermal bridges from thermographic images by means of image processing approximation algorithms, Appl. Math. Comput.317 (2018) 160-171. · Zbl 1426.94008
[5] Bardaro, C., Butzer, P. L., Stens, R. L. and Vinti, G., Kantorovich-type generalized sampling series in the setting of Orlicz spaces, Sampl. Theory Signal Image Process.6(1) (2007) 19-52. · Zbl 1156.41307
[6] Bardaro, C., Karsli, H. and Vinti, G., On pointwise convergence of linear integral operators with homogeneous kernels, Integral Trans. Special Funct.19(6) (2008) 429-439. · Zbl 1156.41006
[7] Bardaro, C. and Mantellini, I., Generalized sampling approximation of bivariate signals: Rate of pointwise convergence, Numer. Funct. Anal. Optim.31(1-3) (2010) 131-154. · Zbl 1198.41006
[8] Bede, B., Coroianu, L. and Gal, S. G., Approximation by Max-Product Type Operators (Springer, New York, 2016). · Zbl 1358.41013
[9] Bede, B., Coroianu, L. and Gal, S. G., Approximation and shape preserving properties of the Bernstein operator of max-product kind, Int. J. Math. Math. Sci.2009 (2009) 590589, https://doi.org/10.1155/2009/590589. · Zbl 1188.41016
[10] Butzer, P. L., A survey of the Whittaker-Shannon sampling theorem and some of its extensions, J. Math. Res. Exposition3 (1983) 185-212. · Zbl 0523.94003
[11] Butzer, P. L., Feichtinger, H. G. and Grochenig, K., Error analysis in regular and irregular sampling theory, Appl. Anal.50(3-4) (1993) 167-189. · Zbl 0818.42012
[12] Butzer, P. L. and Nessel, R. J., Fourier Analysis and Approximations I (Academic Press, New York-London, 1971). · Zbl 0217.42603
[13] Butzer, P. L., Riesz, S. and Stens, R. L., Approximation of continuous and discontinuous functions by generalized sampling series, J. Approx. Theory50 (1987) 25-39. · Zbl 0654.41004
[14] Cao, F. and Chen, Z., The approximation operators with sigmoidal functions, Comput. Math. Appl.58(4) (2009) 758-765. · Zbl 1189.41014
[15] Constales, D., De Bie, H. and Lian, P., A new construction of the Cliford-Fourier kernel, J. Fourier Anal. Appl.23(2) (2017) 462-483. · Zbl 1365.42007
[16] Charina, M., Conti, C., Jetter, K. and Zimmermann, G., Scalar multivariate subdivision schemes and box splines, Comput. Aided Geom. Design28(5) (2011) 285-306. · Zbl 1221.65060
[17] Coroianu, L., Costarelli, D., Gal, S. G. and Vinti, G., The max-product generalized sampling operators: Convergence and quantitative estimates, Appl. Math. Comput.355 (2019) 173-183. · Zbl 1428.41018
[18] Coroianu, L. and Gal, S. G., Approximation by nonlinear generalized sampling operators of max-product kind, Sampl. Theory Signal Image Process.9(1-3) (2010) 59-75. · Zbl 1228.41015
[19] Coroianu, L. and Gal, S. G., Approximation by max-product sampling operators based on sinc-type kernels, Sampl. Theory Signal Image Process.10(3) (2011) 211-230. · Zbl 1346.94074
[20] Coroianu, L. and Gal, S. G., Classes of functions with improved estimates in approximation by the max-product Bernstein operator, Anal. Appl. (Singap.)9(3) (2011) 249-274. · Zbl 1226.41007
[21] Coroianu, L. and Gal, S. G., Approximation by truncated max-product operators of Kantorovich-type based on generalized \((\varphi,\psi)\)-kernels, Math. Methods Appl. Sci.41(17) (2018) 7971-7984. · Zbl 1405.41012
[22] Coroianu, L. and Gal, S. G., \( L^p\)-approximation by truncated max-product sampling operators of Kantorovich-type based on Fejér kernel, J. Integr. Equ. Appl.29(2) (2017) 349-364. · Zbl 1371.41016
[23] Coroianu, L. and Gal, S. G., Saturation results for the truncated max-product sampling operators based on sinc and Fejér-type kernels, Sampl. Theory Signal Image Process.11(1) (2012) 113-132. · Zbl 1346.41004
[24] Costarelli, D., Minotti, A. M. and Vinti, G., Approximation of discontinuous signals by sampling Kantorovich series, J. Math. Analysis Appl.450(2) (2017) 1083-1103. · Zbl 1373.41018
[25] Costarelli, D. and Sambucini, A. R., Approximation results in Orlicz spaces for sequences of Kantorovich max-product neural network operators, Results Math.73(1) (2018) 15, https://doi.org/10.1007/s00025-018-0799-4. · Zbl 1390.41019
[26] Costarelli, D., Sambucini, A. R. and Vinti, G., Convergence in Orlicz spaces by means of the multivariate max-product neural network operators of the Kantorovich type and applications, to appear in Neural Comput. Appl. (2019), https://doi.org/10.1007/s00521-018-03998-6.
[27] Costarelli, D. and Spigler, R., How sharp is the Jensen inequality?J. Inequal. Appl.2015 (2015) 1-10. · Zbl 1309.26014
[28] Costarelli, D. and Vinti, G., Order of approximation for sampling Kantorovich type operators, J. Integr. Equ. Appl.26(3) (2014) 345-368. · Zbl 1308.41016
[29] Costarelli, D. and Vinti, G., Rate of approximation for multivariate sampling Kantorovich operators on some functions spaces, J. Integr. Equ. Appl.26(4) (2014) 455-481. · Zbl 1308.41017
[30] Costarelli, D. and Vinti, G., Approximation by max-product neural network operators of Kantorovich type, Results Math.69(1-2) (2016) 505-519. · Zbl 1355.41009
[31] Costarelli, D. and Vinti, G., Max-product neural network and quasi-interpolation operators activated by sigmoidal functions, J. Approx. Theory209 (2016) 1-22. · Zbl 1350.41001
[32] Costarelli, D. and Vinti, G., Pointwise and uniform approximation by multivariate neural network operators of the max-product type, Neural Netw.81 (2016) 81-90. · Zbl 1439.41009
[33] Costarelli, D. and Vinti, G., Convergence results for a family of Kantorovich max-product neural network operators in a multivariate setting, Math. Slovaca67(6) (2017) 1469-1480. · Zbl 1505.41005
[34] Costarelli, D. and Vinti, G., Convergence for a family of neural network operators in Orlicz spaces, Math. Nachr.290(2-3) (2017) 226-235. · Zbl 1373.47010
[35] Costarelli, D. and Vinti, G., Estimates for the neural network operators of the max-product type with continuous and p-integrable functions, Results Math.73(1) (2018) 12, https://doi.org/10.1007/s00025-018-0790-0. · Zbl 1390.41020
[36] Costarelli, D. and Vinti, G., An inverse result of approximation by sampling Kantorovich series, Proc. Edinb. Math. Soc.62(1) (2019) 265-280. · Zbl 1428.41019
[37] Costarelli, D. and Vinti, G., Inverse results of approximation and the saturation order for the sampling Kantorovich series, J. Approxi. Theory242 (2019) 64-82. · Zbl 1416.41019
[38] DeVore, R. A. and Lorentz, G. G., Constructive Approximation, Vol. 303 (Springer-Verlag, Berlin, 1993). · Zbl 0797.41016
[39] Güngör, S. Y., Ispir, N., Approximation by Bernstein-Chlodowsky operators of max-product kind, Math. Commun.23 (2018) 205-225. · Zbl 1423.41024
[40] Holhos, A., Weighted approximation of functions by Meyer-König and Zeller operators of max-product type, Numer. Funct. Anal. Optim.39(6) (2018) 689-703. · Zbl 1388.41015
[41] Holhos, A., Weighted approximation of functions by Favard operators of max-product type, Period. Math. Hungar.77(2) (2018) 340-346. · Zbl 1413.41027
[42] Ivanov, K. G., On a new characteristic of functions, II. Direct and converse theorems for the best algebraic approximation in \(C[-1,1]\) and \(L^p[-1,1]\), PLISKA Stud. Math. Bulgar.5 (1983) 151-163. · Zbl 0562.41022
[43] Johnen, H. and Scherer, K., On equivalence of a \(K\) functional and modulus of continuity and some applications, in Constructive Theory of Functions of Several Variables, Proc. Conf. Oberwolfach, , Vol. 571 (Springer-Verlag, 1976), pp. 119-140. · Zbl 0348.26005
[44] Li, B.-Z., Approximation by multivariate Bernstein-Durrmeyer operators and learning rates of least-squares regularized regression with multivariate polynomial kernels, J. Approx. Theory173 (2013) 33-55. · Zbl 1282.41009
[45] Orlova, O. and Tamberg, G., On approximation properties of generalized Kantorovich-type sampling operators, J. Approx. Theory201 (2016) 73-86. · Zbl 1329.41030
[46] Ravier, R. J. and Stichartz, R. S., Sampling theory with average values on the Sierpinski gasket, Constr. Approx.44(2) (2016) 159-194. · Zbl 1357.28013
[47] Stens, R. L., Error estimates for sampling sums based on convolution integrals, Inform. Control45 (1980) 37-47. · Zbl 0456.94003
[48] Unser, M. A., Ten good reasons for using spline wavelets, in Optical Science, Engineering and Instrumentation’97 (International Society for Optics and Photonics, 1997), pp. 422-431.
[49] Zhou, D.-X., Deep distributed convolutional neural networks: Universality, Anal. Appl. (Singap.)16(6) (2018) 895-919. · Zbl 1442.68214
[50] D.-X. Zhou, Universality of deep convolutional neural networks (2018), arXiv:1805.10769v2. · Zbl 1442.68214
[51] Zhou, D.-X. and Jetter, K., Approximation with polynomial kernels and SVM classifiers, Adv. Comput. Math.25 (2006) 323-344. · Zbl 1095.68103
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.