×

\(C^1\) spline wavelets on triangulations. (English) Zbl 1126.41006

The theme of this paper is the construction of nested spline spaces based on quadratic splines and on triangulations. For this, nested families of spline spaces are built by using the famous Powell-Sabin split which is suitable for nestedness, unlike other partitioning methods. The splines are made to be continuously differentiable and the nested spaces form a multiresolution analysis. With such a multiresolution analysis, wavelets may be constructed and accordingly a general theory of wavelets on these spaces is given. The function spaces which are most useful for this type of construction are Besov spaces and indeed a whole introductory chapter is devoted to the Besov spaces on triangulations. The mentioned wavelets are constructed and shown to be stable as well, which is, of course, an important property for the usefulness of the wavelets.

MSC:

41A15 Spline approximation
41A63 Multidimensional problems
42C40 Nontrigonometric harmonic analysis involving wavelets and other special systems
65D07 Numerical computation using splines
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
Full Text: DOI

References:

[1] C. de Boor, K. Höllig, and S. Riemenschneider, Box splines, Applied Mathematical Sciences, vol. 98, Springer-Verlag, New York, 1993. · Zbl 0814.41012
[2] Zhongying Chen, Charles A. Micchelli, and Yuesheng Xu, A multilevel method for solving operator equations, J. Math. Anal. Appl. 262 (2001), no. 2, 688 – 699. · Zbl 0990.65059 · doi:10.1006/jmaa.2001.7599
[3] Charles K. Chui and Tian Xiao He, Bivariate \?\textonesuperior quadratic finite elements and vertex splines, Math. Comp. 54 (1990), no. 189, 169 – 187. · Zbl 0682.41010
[4] Charles K. Chui and Qingtang Jiang, Surface subdivision schemes generated by refinable bivariate spline function vectors, Appl. Comput. Harmon. Anal. 15 (2003), no. 2, 147 – 162. · Zbl 1026.68145 · doi:10.1016/S1063-5203(03)00062-9
[5] Charles K. Chui and Qingtang Jiang, Refinable bivariate quartic \?²-splines for multi-level data representation and surface display, Math. Comp. 74 (2005), no. 251, 1369 – 1390. · Zbl 1071.65011
[6] C. K. Chui, J. Stöckler, and J. D. Ward, Compactly supported box-spline wavelets, Approx. Theory Appl. 8 (1992), no. 3, 77 – 100. · Zbl 0766.41010
[7] Charles K. Chui and Jian-zhong Wang, On compactly supported spline wavelets and a duality principle, Trans. Amer. Math. Soc. 330 (1992), no. 2, 903 – 915. · Zbl 0759.41008
[8] Charles K. Chui and Jian-Zhong Wang, A general framework of compactly supported splines and wavelets, J. Approx. Theory 71 (1992), no. 3, 263 – 304. · Zbl 0774.41013 · doi:10.1016/0021-9045(92)90120-D
[9] Oleg Davydov and Pencho Petrushev, Nonlinear approximation from differentiable piecewise polynomials, SIAM J. Math. Anal. 35 (2003), no. 3, 708 – 758. · Zbl 1047.41009 · doi:10.1137/S0036141002409374
[10] Oleg Davydov and Rob Stevenson, Hierarchical Riesz bases for \?^{\?}(\Omega ),1<\?<5\over2, Constr. Approx. 22 (2005), no. 3, 365 – 394. · Zbl 1101.41015 · doi:10.1007/s00365-004-0593-2
[11] Ronald A. DeVore, Björn Jawerth, and Vasil Popov, Compression of wavelet decompositions, Amer. J. Math. 114 (1992), no. 4, 737 – 785. · Zbl 0764.41024 · doi:10.2307/2374796
[12] Michael S. Floater and Ewald G. Quak, Piecewise linear prewavelets on arbitrary triangulations, Numer. Math. 82 (1999), no. 2, 221 – 252. · Zbl 0931.42018 · doi:10.1007/s002110050418
[13] Michael S. Floater and Ewald G. Quak, Linear independence and stability of piecewise linear prewavelets on arbitrary triangulations, SIAM J. Numer. Anal. 38 (2000), no. 1, 58 – 79. · Zbl 0965.42022 · doi:10.1137/S0036142998342628
[14] T. Goodman and D. Hardin, Refinable multivariate spline functions, in Topics in Multivariate Approximation and Interpolation, K. Jetter et al. , Elsevier B. V., 2006, pp. 55-83.
[15] Doug Hardin and Don Hong, Construction of wavelets and prewavelets over triangulations, J. Comput. Appl. Math. 155 (2003), no. 1, 91 – 109. Approximation theory, wavelets and numerical analysis (Chattanooga, TN, 2001). · Zbl 1024.42013 · doi:10.1016/S0377-0427(02)00894-4
[16] Rong Qing Jia, A Bernstein-type inequality associated with wavelet decomposition, Constr. Approx. 9 (1993), no. 2-3, 299 – 318. · Zbl 0773.41017 · doi:10.1007/BF01198008
[17] Rong-Qing Jia, Approximation with scaled shift-invariant spaces by means of quasi-projection operators, J. Approx. Theory 131 (2004), no. 1, 30 – 46. · Zbl 1064.41013 · doi:10.1016/j.jat.2004.07.007
[18] Rong-Qing Jia, Bessel sequences in Sobolev spaces, Appl. Comput. Harmon. Anal. 20 (2006), no. 2, 298 – 311. · Zbl 1097.46008 · doi:10.1016/j.acha.2005.11.001
[19] Rong-Qing Jia and Song-Tao Liu, Wavelet bases of Hermite cubic splines on the interval, Adv. Comput. Math. 25 (2006), no. 1-3, 23 – 39. · Zbl 1101.65123 · doi:10.1007/s10444-003-7609-5
[20] Rong Qing Jia and Charles A. Micchelli, Using the refinement equations for the construction of pre-wavelets. II. Powers of two, Curves and surfaces (Chamonix-Mont-Blanc, 1990) Academic Press, Boston, MA, 1991, pp. 209 – 246. · Zbl 0777.41013
[21] Rong-Qing Jia, Jianzhong Wang, and Ding-Xuan Zhou, Compactly supported wavelet bases for Sobolev spaces, Appl. Comput. Harmon. Anal. 15 (2003), no. 3, 224 – 241. · Zbl 1028.42024 · doi:10.1016/j.acha.2003.08.003
[22] H. Johnen and K. Scherer, On the equivalence of the \?-functional and moduli of continuity and some applications, Constructive theory of functions of several variables (Proc. Conf., Math. Res. Inst., Oberwolfach, 1976) Springer, Berlin, 1977, pp. 119 – 140. Lecture Notes in Math., Vol. 571. · Zbl 0348.26005
[23] Ming-Jun Lai and Larry L. Schumaker, Macro-elements and stable local bases for splines on Powell-Sabin triangulations, Math. Comp. 72 (2003), no. 241, 335 – 354. · Zbl 1009.41007
[24] Song-Tao Liu, Quadratic stable wavelet bases on general meshes, Appl. Comput. Harmon. Anal. 20 (2006), no. 3, 313 – 325. · Zbl 1099.42029 · doi:10.1016/j.acha.2005.11.004
[25] Song-Tao Liu and Yuesheng Xu, Galerkin methods based on Hermite splines for singular perturbation problems, SIAM J. Numer. Anal. 43 (2006), no. 6, 2607 – 2623. · Zbl 1107.65064 · doi:10.1137/040607411
[26] Rudolph Lorentz and Peter Oswald, Criteria for hierarchical bases in Sobolev spaces, Appl. Comput. Harmon. Anal. 8 (2000), no. 1, 32 – 85. · Zbl 0957.46026 · doi:10.1006/acha.2000.0275
[27] P. Oswald, Hierarchical conforming finite element methods for the biharmonic equation, SIAM J. Numer. Anal. 29 (1992), no. 6, 1610 – 1625. · Zbl 0771.65071 · doi:10.1137/0729093
[28] Peter Oswald, Multilevel finite element approximation, Teubner Skripten zur Numerik. [Teubner Scripts on Numerical Mathematics], B. G. Teubner, Stuttgart, 1994. Theory and applications. · Zbl 0830.65107
[29] M. J. D. Powell and M. A. Sabin, Piecewise quadratic approximations on triangles, ACM Trans. Math. Software 3 (1977), no. 4, 316 – 325. · Zbl 0375.41010 · doi:10.1145/355759.355761
[30] Sherman D. Riemenschneider and Zuowei Shen, Wavelets and pre-wavelets in low dimensions, J. Approx. Theory 71 (1992), no. 1, 18 – 38. · Zbl 0772.41019 · doi:10.1016/0021-9045(92)90129-C
[31] Robert C. Sharpley, Cone conditions and the modulus of continuity, Second Edmonton conference on approximation theory (Edmonton, Alta., 1982) CMS Conf. Proc., vol. 3, Amer. Math. Soc., Providence, RI, 1983, pp. 341 – 351. · Zbl 0589.46025
[32] Y. Shen and W. Lin, A wavelet-Galerkin method for a hypersingular integral equation system, in Complex Variables: Theory and Applications, R.P. Gilbert , 2007. · Zbl 1142.65111
[33] Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. · Zbl 0207.13501
[34] Rob Stevenson, A robust hierarchical basis preconditioner on general meshes, Numer. Math. 78 (1997), no. 2, 269 – 303. · Zbl 0895.65057 · doi:10.1007/s002110050313
[35] Rob Stevenson, Stable three-point wavelet bases on general meshes, Numer. Math. 80 (1998), no. 1, 131 – 158. · Zbl 0915.65114 · doi:10.1007/s002110050363
[36] Panayot S. Vassilevski and Junping Wang, Stabilizing the hierarchical basis by approximate wavelets. I. Theory, Numer. Linear Algebra Appl. 4 (1997), no. 2, 103 – 126. , https://doi.org/10.1002/(SICI)1099-1506(199703/04)4:23.0.CO;2-J
[37] Jinchao Xu and Wei Chang Shann, Galerkin-wavelet methods for two-point boundary value problems, Numer. Math. 63 (1992), no. 1, 123 – 144. · Zbl 0771.65050 · doi:10.1007/BF01385851
[38] Harry Yserentant, On the multilevel splitting of finite element spaces, Numer. Math. 49 (1986), no. 4, 379 – 412. , https://doi.org/10.1007/BF01389538 Harry Yserentant, Erratum: ”On the multilevel splitting of finite element spaces”, Numer. Math. 50 (1986), no. 1, 123. · Zbl 0625.65109 · doi:10.1007/BF01389672
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.