×

Adaptive high-order finite difference analysis of 2D quenching-type convection-reaction-diffusion equation. (English) Zbl 07427020

Summary: Quenching characteristics based on the two-dimensional (2D) nonlinear unsteady convection-reaction-diffusion equation are creatively researched. The study develops a 2D compact finite difference scheme constructed by using the first and the second central difference operator to approximate the first-order and the second-order spatial derivative, Taylor series expansion rule, and the reminder-correction method to approximate the three-order and the four-order spatial derivative, respectively, and the forward difference scheme to discretize temporal derivative, which brings the accuracy resulted meanwhile. Influences of degenerate parameter, convection parameter, and the length of the rectangle definition domain on quenching behaviors and performances of special quenching cases are discussed and evaluated by using the proposed scheme on the adaptive grid. It is feasible for the paper to offer potential support for further research on quenching problem.

MSC:

65-XX Numerical analysis
76-XX Fluid mechanics

References:

[1] Ha, K. S.; Park, R. J.; Kim, S. B.; Kim, H. D., Experimental investigations of the quenching phenomena for hemispherical downward facing convex surfaces with narrow gaps, International Communications in Heat and Mass Transfer, 34, 1, 28-36 (2007) · doi:10.1016/j.icheatmasstransfer.2006.09.009
[2] Lee, J.; Son, G.; Yoon, H. Y., Numerical simulation of the quenching process in liquid jet impingement, International Communications in Heat and Mass Transfer, 61, 146-152 (2015) · doi:10.1016/j.icheatmasstransfer.2014.12.017
[3] Ramezanzadeh, H.; Ramiar, A.; Yousefifard, M., Numerical investigation into coolant liquid velocity effect on forced convection quenching process, Applied Thermal Engineering, 122, 253-267 (2017) · doi:10.1016/j.applthermaleng.2017.05.008
[4] Li, J. Q.; Mou, L. W.; Zhang, J. Y.; Zhang, Y. H.; Fan, L. W., Enhanced pool boiling heat transfer during quenching of water on superhydrophilic porous surfaces: effects of the surface wickability, International Communications in Heat and Mass Transfer, 125, 494-505 (2018) · doi:10.1016/j.ijheatmasstransfer.2018.04.099
[5] Yokomatsu, F.; Fogaça, W.; Mori, S.; Tanaka, M., On the quenching of stainless steel rods with a honeycomb porous plate on a nanoparticle deposited surface in saturated water, International Journal of Heat and Mass Transfer, 127, 507-514 (2018) · doi:10.1016/j.ijheatmasstransfer.2018.07.009
[6] Xu, R. Z.; Jin, C. Y.; Yu, T.; Liu, Y. C., On quenching for some parabolic problems with combined power-type nonlinearities, Nonlinear Analysis: Real World Applications, 13, 1, 333-339 (2012) · Zbl 1238.35042 · doi:10.1016/j.nonrwa.2011.07.040
[7] Zhou, S. M.; Mu, C. L.; Du, Q. L.; Zeng, R., Quenching for a reaction-diffusion equation with nonlinear memory, Communications in Nonlinear Science Numerical Simulation, 17, 2, 754-763 (2012) · Zbl 1248.35101 · doi:10.1016/j.cnsns.2011.05.043
[8] Pan, H.; Xing, R., Fringing field can prevent infinite time quenching, Nonlinear Analysis: Real World Applications, 30, 126-142 (2016) · Zbl 1342.35045 · doi:10.1016/j.nonrwa.2015.12.004
[9] Zhou, J., Quenching for a parabolic equation with variable coefficient modeling MEMS technology, Applied Mathematics and Computation, 314, 7-11 (2017) · Zbl 1426.35141 · doi:10.1016/j.amc.2017.06.026
[10] Wang, Q., Quenching phenomenon for a parabolic MEMS equation, Chinese Annual of Mathematics Series B, 39, 1, 129-144 (2018) · Zbl 1398.35125 · doi:10.1007/s11401-018-1056-6
[11] Zhou, S. M.; Mu, C. L., Quenching for a reaction-diffusion system with coupled inner singular absorption terms, Boundary Value Problems, 2010, 1, 15 (2010) · Zbl 1201.35114 · doi:10.1155/2010/797182
[12] Selcuk, B., Quenching behavior of a semilinear reaction-diffusion system with singularboundary condition, Turkish Journal of Mathematics, 40, 166-180 (2016) · Zbl 1424.35210 · doi:10.3906/mat-1502-20
[13] Bonis, I. D.; Muntean, A., Existence of weak solutions to a nonlinear reaction-diffusion system with singular sources, Electronic Journal of Differential Equations, 2017, 202, 1-16 (2017) · Zbl 1370.35177
[14] Selcuk, B.; Ozalp, N., The quenching behavior of a semilinear heat equation with a singular boundary outflux, Quarterly of Applied Mathematics, 72, 4, 747-752 (2017) · Zbl 1327.35207
[15] Ge, Y.; Cai, Z.; Sheng, Q., A compact adaptive approach for degenerate singular reaction-diffusion equations, Numerical Methods in Partial Differential Equations, 34, 4, 1166-1187 (2018) · Zbl 1407.80011 · doi:10.1002/num.22250
[16] Beauregard, M. A., Numerical approximations to a fractional Kawarada quenching problem, Applied Mathematics and Computation, 349, 14-22 (2019) · Zbl 1429.65178 · doi:10.1016/j.amc.2018.12.029
[17] Zhou, Q.; Nie, Y. Y.; Zhou, X.; Guo, W., Quenching of a semilinear diffusion equation with convection and reaction, Electronic Journal of Differential Equations, 2015, 208, 1-7 (2015) · Zbl 1322.35076
[18] Zhu, X.; Hong, R., High-order compact difference scheme of 1D nonlinear degenerate convection-reaction-diffusion equation with adaptive algorithm, Numerical Heat Transfer, Part B: Fundamentals, 75, 1, 43-66 (2019) · doi:10.1080/10407790.2019.1591858
[19] Beauregard, M. A.; Sheng, Q., A semi-adaptive compact splitting method for the numerical solution of 2-dimensional quenching problems, Applied Mathematics and Computation, 218, 22, 11240-11254 (2012) · Zbl 1280.65086 · doi:10.1016/j.amc.2012.05.016
[20] Beauregard, M. A.; Sheng, Q., Solving degenerate quenching-combustion equations by an adaptive splitting method on evolving grids, Computers and Structures, 122, 33-43 (2013) · doi:10.1016/j.compstruc.2012.10.014
[21] Padgett, J. L.; Sheng, Q., Numerical solution of degenerate stochastic Kawarada equations via a semi-discretized approach, Applied Mathematics and Computation, 325, 210-226 (2018) · Zbl 1428.60098 · doi:10.1016/j.amc.2017.12.034
[22] Zhu, X.; Ge, Y., Adaptive ADI numerical analysis of 2D quenching-type reaction: diffusion equation with convection term, Mathematical Problems in Engineering, 2020 (2020) · Zbl 1459.65164 · doi:10.1155/2020/8161804
[23] Kwang, S. H.; Rae, J. P.; Sang, B. K.; Hee, D. K., A high-accuracy finite difference scheme for solving reaction-convection-diffusion problems with a small diffusivity, Advances in Applied Mathematics and Mechanics, 6, 5, 637-662 (2014) · Zbl 1310.65137
[24] Li, L.; Jiang, Z.; Yin, Z., Fourth-order compact finite difference method for solving two-dimensional convection-diffusion equation, Advances in Difference Equations, 234 (2018) · Zbl 1446.65142
[25] Wu, L.; Zhai, S., A new high order ADI numerical difference formula for time-fractional convection-diffusion equation, Applied Mathematics and Computation, 7, 1-10 (2019)
[26] Xue, W.; Ge, Y., High-order compact difference schemes and multigrid algorithms on non-uniform grids for the two-dimensional incompressible vorticity-stream function Navier-Stokes equations (2014), Yinchuan: Ningxia University, Yinchuan
[27] Huang, X.; Ge, Y., A high-order compact ADI method on non-uniform grid for unsteady convection-diffusion equations (2013), Yinchuan: Ningxia University, Yinchuan
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.