×

Application of high-credible statistical results calculation scheme based on least squares quasi-Monte Carlo method in multimodal stochastic problems. (English) Zbl 1539.65010

Summary: Solving stochastic problems based on multimodal distributions with high accuracy and efficiency is the focus of current research in the stochastic field. However, since exact statistical results in practical engineering problems are unknown, how to efficiently obtain statistical results with high credibility is of great importance. Therefore, a high-credible statistical results calculation scheme is proposed in this paper. First, the multimodal model is transformed into a weighted sum form of multiple unimodal models by Gaussian mixture model. Then, a high-credible statistical results calculation scheme is designed based on the reusability of low-discrepancy sequences in the quasi-Monte Carlo (QMC) method. The scheme calculates the coefficient of variation for the random response statistical results of the unimodal model across various sample ranges. When the coefficient of variation is less than the tolerance error, which indicates low fluctuation, the statistical results are deemed to have converged to the exact solution. In order to further accelerate the calculation efficiency of the proposed scheme, this paper proposes a least squares quasi-Monte Carlo (LSQMC) method to yield high accuracy statistical moments. Compared with the averageness weights in the QMC method, the non-averageness weights obtained by LSQMC method can more effectively reflect the numerical Characteristics of the random variables and the location distribution of the sampling points in the probability space. Finally, numerical examples have demonstrated that the high-credible statistical results calculation scheme based on the LSQMC method can obtain the high accuracy statistical moments with high efficiency in multimodal stochastic problems.

MSC:

65C05 Monte Carlo methods
62H30 Classification and discrimination; cluster analysis (statistical aspects)
Full Text: DOI

References:

[1] Ni, Y. Q.; Ye, X. W.; Ko, J. M., Modeling of stress spectrum using long-term monitoring data and finite mixture distributions. J. Eng. Mech., 2, 175-183 (2012)
[2] Zhang, J.; Chowdhury, S.; Messac, A.; Castillo, L., A Multivariate and multimodal wind distribution model. Renew. Energy, 436-447 (2013)
[3] Mones, E.; Araújo, N.; Vicsek, T.; Herrmann, H., Shock waves on complex networks. Sci. Rep., 1, 4949 (2014)
[4] Wei, X. P.; Yao, Z. Y.; Zhang, Z.; Jiang, C., First-order reliability method to problems involving multimodal distributions. Struct. Multidiscip. Optim., 6, 143 (2023)
[5] Zhang, Z.; Jiang, C.; Han, X.; Ruan, X. X., A high-precision probabilistic uncertainty propagation method for problems involving multimodal distributions. Mech. Syst. Signal Proc., 21-41 (2019)
[6] Zhang, Z.; Wang, J.; Jiang, C.; Huang, Z., A new uncertainty propagation method considering multimodal probability density functions. Struct. Multidiscip. Optim., 1983-1999 (2019)
[7] Meng, X. H.; Liu, J.; Cao, L. X.; Yu, Z. B.; Yang, D. M., A general frame for uncertainty propagation under multimodally distributed random variables. Comput. Methods Appl. Mech. Eng. (2020) · Zbl 1442.60027
[8] Yu, Q. F.; Xu, J., Harmonic transform-based density estimation method for uncertainty propagation and reliability analysis involving multi-modal distributions. Mech. Syst. Signal Proc. (2023)
[9] Li, L. X.; Chen, G. H.; Fang, M. X.; Yang, D. X., Reliability analysis of structures with multimodal distributions based on direct probability integral method. Reliab. Eng. Syst. Saf. (2021)
[10] Xu, H.; Rahman, S., A generalized dimension-reduction method for multidimensional integration in stochastic mechanics. Int. J. Numer. Meth. Eng., 1992-2019 (2004) · Zbl 1075.74707
[11] He, J.; Gao, S. B.; Gong, J. H., A sparse grid stochastic collocation method for structural reliability. Struct. Saf., 29-34 (2014)
[12] Chen, G. H.; Yang, D. X., Direct probability integral method for stochastic response analysis of static and dynamic structural systems. Comput. Methods Appl. Mech. Eng. (2019) · Zbl 1442.65004
[13] Zhang, N.; Yao, L. Y.; Jiang, G. Q., A coupled finite element-least squares point interpolation/boundary element method for structure-acoustic system with stochastic perturbation method. Eng. Anal. Bound. Elem., 83-94 (2020) · Zbl 1464.74351
[14] Cui, X. Y.; Hu, X. B.; Zeng, Y., A copula-based perturbation stochastic method for fiber-reinforced composite structures with correlations. Comput. Meth. Appl. Mech. Eng., 351-372 (2017) · Zbl 1439.74403
[15] Qiu, Z. P.; Zheng, Y. N., Fatigue crack growth modeling and prediction with uncertainties via stochastic perturbation series expansion method. Int. J. Mech. Sci., 284-290 (2017)
[16] Wang, C.; Qiu, Z. P.; He, Y. Y., Fuzzy stochastic finite element method for the hybrid uncertain temperature field prediction. Int. J. Heat Mass Transf., 512-519 (2015)
[17] Wang, L.; Liu, J. X.; Yang, C.; Wu, D., A novel interval dynamic reliability computation approach for the risk evaluation of vibration active control systems based on PID controllers. Appl. Math. Model., 422-446 (2021) · Zbl 1481.93043
[18] Xiu, D. B.; Shen, J., Efficient stochastic Galerkin methods for random diffusion equations. J. Comput. Phys., 2, 266-281 (2009) · Zbl 1161.65008
[19] Wu, K. L.; Xiu, D. B.; Zhong, X. H., A WENO-based stochastic Galerkin scheme for ideal MHD equations with random inputs. Commun. Comput. Phys., 2, 423-447 (2021) · Zbl 1473.65217
[20] Gerritsma, M.; van der Steen, J. B.; Vos, P.; Karniadakis, G., Time-dependent generalized polynomial chaos. J. Comput. Phys., 22, 8333-8363 (2010) · Zbl 1201.65216
[21] Nath, K.; Dutta, A.; Hazra, B., Long duration response evaluation of linear structural system with random system properties using time dependent polynomial chaos. J. Comput. Phys. (2020) · Zbl 07506162
[22] Mahjudin, M.; Lardeur, P.; Druesne, F.; Katili, I., Extension of the certain generalized stresses method for the stochastic analysis of homogeneous and laminated shells. Comput. Methods Appl. Mech. Eng. (2020) · Zbl 1442.74005
[23] Shu, S.; Gao, Y. F.; Wu, Y. X.; Ye, Z. T.; Song, S. X., Bearing capacity and reliability analysis of spudcan foundations embedded at various depths based on the non-stationary random finite element method. Appl. Ocean Res. (2020)
[24] Wu, F.; Gao, Q.; Xu, X. M.; Zhong, W. X., A modified computational format for the stochastic perturbation finite element method, Lat. Am. J. Solids Struct., 13, 2480-2505 (2015)
[25] Wu, F.; Zhong, W. X., A modified stochastic perturbation method for stochastic hyperbolic heat conduction problems. Comput. Methods Appl. Mech. Eng., 739-758 (2016) · Zbl 1425.74021
[26] Bressolette, P.; Fogli, M.; Chauviere, C., A stochastic collocation method for large classes of mechanical problems with uncertain parameters. Probab. Eng. Eng. Mech., 2, 255-270 (2010)
[27] Wang, C.; Qiu, Z. P.; Yang, Y. W., Collocation methods for uncertain heat convection-diffusion problem with interval input parameters. Int. J. Therm. Sci., 230-236 (2016)
[28] Dai, H. Z.; Zhang, R. J.; Beer, M., A new method for stochastic analysis of structures under limited observations. Mech. Syst. Signal Proc. (2023)
[29] Wang, C.; Qiu, Z. P.; Yang, Y. W., Uncertainty propagation of heat conduction problem with multiple random inputs. Int. J. Heat Mass Transf., 95-101 (2016)
[30] Park, S. K.; Miller, K. W., Random number generators - good ones are hard to find. Commun. ACM, 10, 1192-1201 (1988)
[31] Matsumoto, M.; Nishimura, T., Mersenne Twister: a 623-dimensionally equidistributed uniform pseudo-random number generator. ACM Trans. Model. Comput. Simul., 1, 3-30 (1998) · Zbl 0917.65005
[32] Graham, I. G.; Kuo, F. Y.; Nichols, J. A.; Scheichl, R.; Schwab, Ch.; Sloan, I. H., Quasi-Monte Carlo finite element methods for elliptic PDEs with lognormal random coefficients. Numer. Math., 2, 329-368 (2014) · Zbl 1341.65003
[33] Kuo, F. Y.; Nuyens, D., Application of Quasi-Monte Carlo methods to elliptic PDEs with random diffusion coefficients: a survey of analysis and implementation. Found. Comput. Math., 6, 1631-1696 (2016) · Zbl 1362.65015
[34] Palluotto, L.; Dumont, N.; Rodrigues, P.; Gicquel, O.; Vicquelin, R., Assessment of randomized quasi-Monte Carlo method efficiency in radiative heat transfer simulations. J. Quant. Spectrosc. Radiat. Transf. (2019)
[35] Halton, J. H., On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals. Numer. Math., 84-90 (1960) · Zbl 0090.34505
[36] Hua, L. G.; Wang, Y., On uniform distribution and numerical analysis. I. Number-theoretic method. Sci. Chin. Ser. A, 1, 483-505 (1973)
[37] Hua, L. G.; Wang, Y., On uniform distribution and numerical analysis. II. Number-theoretic method. Sci. Chin. Ser. A, 3, 331-348 (1974)
[38] Hua, L. G.; Wang, Y., On uniform distribution and numerical analysis. I. Number-theoretic method. Sci. Chin. Ser., 2, 184-198 (1975)
[39] Radovic´, I.; Sobol, I. M.; Tichy, R. F., Quasi-Monte Carlo methods for numerical integration: comparison of different low discrepancy sequences. Monte Carlo Methods Appl., 1, 1-14 (1996) · Zbl 0851.65015
[40] Wu, F.; Zhao, K.; Zhao, L. L.; Chen, C. Y.; Zhong, W. X., Uncertainty analysis of the control rod drop based on the adaptive collocation stochastic perturbation method. Ann. Nucl. Energy (2023)
[41] Smolyak, S. A., Quadrature and interpolation formulas for tensor products of certain classed of functions. Dokl. Akad. Nauk SSSR, 5, 240-243 (1963)
[42] Sobczyk, K.; Trcebicki, J., Approximate probability distributions for stochastic systems: maximum entropy method. Comput. Methods Appl. Mech. Eng., 1-4, 91-111 (1999) · Zbl 0958.60056
[43] Zhang, R. J.; Dai, H. Z., A non-Gaussian stochastic model from limited observations using polynomial chaos and fractional moments. Reliab. Eng. Syst. Saf. (2022)
[44] Deng, J., Probabilistic characterization of soil properties based on the maximum entropy method from fractional moments: model development, case study, and application. Reliab. Eng. Syst. Saf. (2022)
[45] Li, H. S.; Lu, Z. Z.; Yuan, X. K., Nataf transformation-based point estimate method. Chin. Sci. Bull., 17, 2586-2592 (2008)
[46] Lin, X. Y.; Jiang, Y. Y.; Peng, S.; Chen, H. X.; Tang, J. J.; Li, W. Y., An efficient Nataf transformation based probabilistic power flow for high-dimensional correlated uncertainty sources in operation. Int. J. Electr. Power Energy Syst. (2020)
[47] Wu, F.; Zhao, Y. L.; Zhao, K.; Zhong, W. X., A multi-body dynamical evolution model for generating the point set with best uniformity. Swarm Evol. Comput. (2022)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.