×

The time-marching method of fundamental solutions for wave equations. (English) Zbl 1244.65152

Summary: In this paper, a meshless numerical algorithm is developed for the solution of multi-dimensional wave equations with complicated domains. The proposed numerical method, which is truly meshless and quadrature-free, is based on the Houbolt finite difference (FD) scheme, the method of the particular solutions (MPS) and the method of fundamental solutions (MFS). The wave equation is transformed into a Poisson-type equation with a time-dependent loading after the time domain is discretized by the Houbolt FD scheme. The Houbolt method is used to avoid the difficult problem of dealing with time evolution and the initial conditions to form the linear algebraic system. The MPS and MFS are then coupled to analyze the governing Poisson equation at each time step. In this paper we consider six numerical examples, namely, the problem of two-dimensional membrane vibrations, the wave propagation in a two-dimensional irregular domain, the wave propagation in an L-shaped geometry and wave vibration problems in the three-dimensional irregular domain, etc. Numerical validations of the robustness and the accuracy of the proposed method have proven that the meshless numerical model is a highly accurate and efficient tool for solving multi-dimensional wave equations with irregular geometries and even with non-smooth boundaries.

MSC:

65M80 Fundamental solutions, Green’s function methods, etc. for initial value and initial-boundary value problems involving PDEs
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs

Software:

LEMan
Full Text: DOI

References:

[1] Jiang, F.; Oliveira, M. S.A.; Sousa, A. C.M., Mesoscale SPH modeling of fluid flow in isotropic porous media, Comput Phys Commun, 176, 7, 471-480 (2007) · Zbl 1196.76078
[2] Young, D. L.; Chen, C. S.; Wong, T. K., Solution of Maxwell’s equations using the MQ method, CMC—Comput Mater Continua, 2, 4, 267-276 (2005)
[3] Cheng, A. H.D.; Golberg, M. A.; Kansa, E. J.; Zammito, G., Exponential convergence and H-c multiquadric collocation method for partial differential equations, Numer Meth Partial Differ Equ, 19, 5, 571-594 (2003) · Zbl 1031.65121
[4] Young, D. L.; Jane, S. J.; Fan, C. M.; Murugesan, K.; Tsai, C. C., The method of fundamental solutions for 2D and 3D stokes problems, J Comput Phys, 211, 1, 1-8 (2006) · Zbl 1160.76332
[5] Young, D. L.; Chen, K. H.; Lee, C. W., Novel meshless method for solving the potential problems with arbitrary domain, J Comput Phys, 209, 1, 290-321 (2005) · Zbl 1073.65139
[6] Kupradze, V. D.; Aleksidze, M. A., The method of functional equations for the approximate solution of certain boundary value problem, Comput Math Math Phys, 4, 4, 82-126 (1964) · Zbl 0154.17604
[7] Mathon, R.; Johnston, R. L., The approximate solution of elliptic boundary-value problems by fundamental solutions, SIAM J Numer Anal, 14, 4, 638-650 (1977) · Zbl 0368.65058
[8] Golberg, M. A., The method of fundamental solutions for Poisson’s equations, Eng Anal Boundary Elem, 16, 3, 205-213 (1995)
[9] Golberg, M. A.; Chen, C. S., The method of fundamental solutions for potential, Helmholtz and diffusion problems, (Golberg, M. A., Boundary integral methods: numerical and mathematical aspects (1999), Computational Mechanics Publications), 103-176 · Zbl 0945.65130
[10] Chen, C. S., The method of fundamental solutions for nonlinear thermal explosion, Commun Numer Methods Eng, 11, 675-681 (1995) · Zbl 0839.65143
[11] Valtchev, S. S.; Roberty, N. C., A time-marching MFS scheme for heat conduction problems, Eng Anal Boundary Elem, 32, 480-493 (2008) · Zbl 1244.80025
[12] Young, D. L.; Tsai, C. C.; Murugesan, K.; Fan, C. M.; Chen, C. W., Time dependent fundamental solutions for homogeneous diffusion problems, Eng Anal Boundary Elem, 28, 12, 1463-1473 (2004) · Zbl 1098.76622
[13] Young, D. L.; Tsai, C. C.; Fan, C. M., Direct approach to solve nonhomogeneous diffusion problems using fundamental solutions and dual reciprocity methods, J Chin Inst Eng, 27, 597-609 (2004)
[14] Young, D. L.; Chen, C. H.; Fan, C. M.; Shen, L. H., The method of fundamental solutions with eigenfunctions expansion method for 3D nonhomogeneous diffusion equation, Numer Meth Partial Differ Equ, 25, 1, 195-211 (2009) · Zbl 1152.65472
[15] Young, D. L.; Fan, C. M.; Tsai, C. C.; Chen, C. W.; Murugesan, K., Eulerian-Lagrangian method of fundamental solutions for multi-dimensional advection-diffusion equation, Int J Meth Forum, 1, 687-706 (2006) · Zbl 1143.65384
[16] Young, D. L.; Fan, C. M.; Hu, S. P.; Atluri, S. N., The Eulerian-Lagrangian method of fundamental solutions for two-dimensional unsteady Burgers’ equations, Eng Anal Boundary Elem, 32, 5, 395-412 (2008) · Zbl 1244.76096
[17] Gou MH, Young DL. Application of the method of fundamental solutions to solve advection-diffusion equations. The Pacific Congress on Marine Science and Technology (PACON2005) November 6-9, 2005, Changhwa, Taiwan.; Gou MH, Young DL. Application of the method of fundamental solutions to solve advection-diffusion equations. The Pacific Congress on Marine Science and Technology (PACON2005) November 6-9, 2005, Changhwa, Taiwan.
[18] Young, D. L.; Lin, Y. C.; Fan, C. M.; Chiu, C. L., Method of fundamental solutions for solving incompressible Navier-Stokes problems, Eng Anal Boundary Elem, 33, 1031-1044 (2009) · Zbl 1244.76104
[19] Popovich, P.; Cooper, W. A.; Villard, L., A full-wave solver of the Maxwell’s equations in 3D cold plasmas, Comput Phys Commun, 175, 4, 250-263 (2006) · Zbl 1196.82114
[20] Kim, H. C.; Verboncoeur, J. P., Reflection, absorption and transmission of TE electromagnetic waves propagation in a nonuniform plasma slab, Comput Phys Commun, 177, 1-2, 118-121 (2007)
[21] Davis, J. L., Mathematics of wave propagation (2000), Princeton University Press: Princeton University Press New Jersey · Zbl 0951.76001
[22] Wazwaz, A. M., A reliable technique for solving the wave equation in an infinite one-dimensional medium, Appl Math Comput, 92, 1, 1-7 (1998) · Zbl 0942.65107
[23] Gu, M. H.; Young, D. L.; Fan, C. M., The meshless method for one-dimensional hyperbolic equation, J Aeronaut Astronaut Aviat, 40, 63-72 (2008)
[24] Tanaka, M.; Chen, W., Dual reciprocity BEM applied to transient elastodynamic problems with differential quadrature method in time, Comput Meth Appl Mech Eng, 190, 18-19, 2331-2347 (2001) · Zbl 1048.74050
[25] Carrer, J. A.M.; Mansur, W. J., Alternative time-marching schemes for elastodynamic analysis with the domain boundary element method formulation, Comput Mech, 34, 5, 387-399 (2004) · Zbl 1158.74509
[26] Wang, H.; Qin, Q. H., A meshless method for generalized linear or nonlinear Poisson-type problems, Eng Anal Boundary Elem, 30, 6, 515-521 (2006) · Zbl 1195.65180
[27] Alves, C. J.S.; Chen, C. S., A new method of fundamental solutions applied to nonhomogeneous elliptic problems, Adv Comp Math, 23, 125-142 (2005) · Zbl 1070.65119
[28] Chen, C. S.; Fan, C. M.; Monroe, J., The method of fundamental solutions for solving elliptic partial differential equations with variable coefficients, (Chen, C. S.; Karageorghis, A.; Smyrlis, Y. S., The method of fundamental solutions-A meshless method (2008), Dynamic Publishers), 75-105
[29] Wang, H.; Qin, Q. H.; Kang, Y. L., A meshless model for transient heat conduction in functionally graded materials, Comput Mech, 38, 1, 51-60 (2006) · Zbl 1097.80001
[30] Cho, H. A.; Golberg, M. A.; Muleshkov, A. S.; Li, X., Trefftz methods for time dependent partial differential equations, CMC—Comput Mater Continua, 1, 1, 1-37 (2004)
[31] Houbolt, J. C., A recurrence matrix solution for the dynamic response of elastic aircraft, J Aeronauti Sci, 17, 540-550 (1950)
[32] Soroushian, A.; Farjoodi, J., A unified starting procedure for the Houbolt method, Commun Numer Methods Eng, 24, 1, 1-13 (2008) · Zbl 1139.74050
[33] Chen, C. S.; Brebbia, C. A.; Power, H., Dual reciprocity method using compactly supported radial basis functions, Commun Numer Methods Eng, 15, 2, 137-150 (1999) · Zbl 0927.65140
[34] Young, D. L.; Fan, C. M.; Tsai, C. C.; Chen, C. W., The method of fundamental solutions and domain decomposition method for degenerate seepage flownet problems, J Chin Inst Eng, 29, 1, 63-73 (2006)
[35] Chen, C. W.; Fan, C. M.; Young, D. L.; Murugesan, K.; Tsai, C. C., Eigenanalysis for membranes with stringers using the methods of fundamental solutions and domain decomposition, CMES—Comp Model Eng Sci, 8, 1, 29-44 (2005) · Zbl 1160.74421
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.