×

Discriminative sparse flexible manifold embedding with novel graph for robust visual representation and label propagation. (English) Zbl 1428.68269

Summary: We explore the problem of robust visual representation and enhanced label prediction. Technically, a Discriminative Sparse Flexible Manifold Embedding (SparseFME) method with novel graph is proposed. SparseFME enhances the representation and label prediction powers of FME by improving the reliability and robustness of distance metric, such as using the \(l_{2,1}\)-norm to measure the flexible regression residue encoding the mismatch between embedded features and the soft labels, and regularizing the \(l_{2,1}\)-norm on the soft labels directly to boost the discriminating power so that less unfavorable mixed signs that may result in negative effects on performance are included. Besides, our SparseFME replaces the noise-sensitive Frobenius norm used in FME by \(l_{2,1}\)-norm to encode the projection that maps data into soft labels, so the projection can be ensured to be sparse in rows so that discriminative soft labels can be learnt in the latent subspace. Thus, more accurate identification of hard labels can be obtained. To obtain high inter-class separation and high intra-class compactness of the predicted soft labels, and encode the neighborhood of each sample more accurately, we also propose a novel graph weight construction method by integrating class information and considering a certain kind of similarity/dissimilarity of samples so that the true neighborhoods can be discovered. The theoretical convergence analysis and connection to other models are also presented. State-of-art performances are delivered by our SparseFME compared with several related criteria.

MSC:

68T05 Learning and adaptive systems in artificial intelligence

Software:

CMU PIE
Full Text: DOI

References:

[1] Chapelle, O.; Scholkopf, B.; Zien, A., Semi-Supervised Learning (2006), MIT Press: MIT Press Cambridge
[5] Wang, F.; Zhang, C. S., Label propagation through linear Neighborhoods, IEEE Trans. Knowl. Data Eng., 20, 1, 55-67 (2008)
[7] Nie, F. P.; Xiang, S. M.; Liu, Y.; Zhang, C. S., A general graph-based semi-supervised learning with novel class discovery, Neural Comput. Appl., 19, 4, 549-555 (2010)
[8] Nie, F. P.; Xiang, S. M.; Jia, Y. Q.; Zhang, C. S., Semi-supervised orthogonal discriminant analysis via label propagation, Pattern Recognit., 42, 11, 2615-2627 (2009) · Zbl 1175.68338
[9] Zhang, Z.; Zhao, M. B.; Chow, T. W.S., Graph based constrained semi-supervised learning framework via label propagation over adaptive neighborhood, IEEE Trans. Knowl. Data Eng., 27, 9, 2362-2376 (2015)
[10] Wang, M.; Hua, X. S.; Meia, T.; Hong, R. C.; Qi, G. J.; Song, Y.; Dai, L. R., Semi-supervised kernel density estimation for video annotation, Comput. Vis. Image Underst., 113, 3, 384-396 (2009)
[12] Zhang, Z.; Chow, T. W.S.; Zhao, M. B., Trace ratio optimization based semi-supervised nonlinear dimensionality reduction for marginal manifold visualization, IEEE Trans. Knowl. Data Eng., 25, 5, 1148-1161 (2013)
[13] Lu, Z. W.; Peng, Y. X., Exhaustive and efficient constraint propagation: a graph-based learning approach and its applications, Int. J. Comput. Vis., 103, 3, 306-325 (2013) · Zbl 1270.68351
[14] Wright, J.; Ma, Y.; Mairal, J.; Sapiro, G.; Huang, T.; Yan, S. C., Sparse representation for computer vision and pattern recognition, Proc. IEEE, 98, 6, 1031-1044 (2010)
[15] Graham, D. B.; Allinson, N. M., Characterizing virtual eigensignatures for general 870 purpose face recognition in face recognition: from theory to application, (Wechsler, H.; Phillips, P. J.; Bruce, V.; Fogelman-Soulie, F.; Huang, T. S., NATO ASI Series F: Computer and Systems Sciences, 163 (1998)), 446-456
[16] Zhang, Z.; Zhao, M. B.; Chow, T. W.S., Binary- and multi-class group sparse canonical correlation analysis for feature extraction and classification, IEEE Trans. Knowl. Data Eng., 25, 10, 2192-2205 (2013)
[17] Li, Z. C.; Liu, J.; Tang, J. H.; Lu, H. Q., Robust structured subspace learning for data representation, IEEE Trans. Pattern Anal. Mach. Intell., 37, 10, 2085-2098 (2015)
[18] Hou, C. P.; Nie, F. P.; Li, X. L.; Yi, D. Y.; Wu, Yi, Joint embedding learning and sparse regression: a framework for unsupervised feature selection, IEEE Trans. Cybern., 44, 6, 793-804 (2014)
[19] Zhang, Z.; Yan, S. C.; Zhao, M. B., Pairwise sparsity preserving embedding for unsupervised subspace learning and classification, IEEE Trans. Image Process., 22, 12, 4640-4651 (2013) · Zbl 1373.68343
[21] Roweis, S.; Saul, L., Nonlinear dimensionality reduction by locally linear embedding, Science, 290, 5500, 2323-2326 (2000)
[23] Kokiopoulou, E.; Chen, J.; Saad, Y., Trace optimization and eigenproblems in dimension reduction methods, Numer. Linear Algebra Appl., 18, 3, 565-602 (2011) · Zbl 1249.65075
[25] Culp, M.; Michailidis, G., Graph-based semi-supervised learning, IEEE Trans. Pattern Anal. Mach. Intell., 30, 1, 174-179 (2008)
[28] Belkin, M.; Niyogi, P., Laplacian eigenmaps for dimensionality reduction and data representation, Neural Comput., 15, 6, 1373-1396 (2003) · Zbl 1085.68119
[30] Song, Y. Q.; Nie, F. P.; Zhang, C. S.; Xiang, S. M., A unified framework for semi-supervised dimensionality reduction, Pattern Recognit., 41, 9, 2789-2799 (2008) · Zbl 1154.68501
[31] Zhang, Z.; Zhao, M. B.; Chow, T. W.S., Marginal semi-supervised sub-manifold projections with informative constraints for dimensionality reduction and recognition, Neural Netw., 36, 97-111 (2012) · Zbl 1258.68132
[32] Qiao, L. S.; Chen, S. C.; Tan, X. Y., Sparsity preserving projections with applications to face recognition, Pattern Recognit., 43, 1, 331-341 (2010) · Zbl 1186.68421
[33] Sim, T.; Baker, S.; Bsat, M., The CMU pose, illumination, and expression database, IEEE Trans. Pattern Anal. Mach. Intell., 25, 12, 1615-1618 (2003)
[34] Zang, F.; Zhang, J. S., Label propagation through sparse neighborhood and its applications, Neurocomputing, 97, 267-277 (2012)
[37] Zhao, M. B.; Chow, T. W.S.; Zhang, Z.; Li, B., Automatic image annotation via compact graph based semi-supervised learning, Knowl.-Based Syst., 76, 148-165 (2015)
[38] Wright, J.; Yang, M.; Ganesh, A.; Sastry, S.; Ma, Y., Robust face recognition via sparse representation, IEEE Trans. Pattern Anal. Mach. Intell., 31, 2, 210-227 (2009)
[39] Jiang, Z. L.; Lin, Z.; Davis, L. S., Label consistent K-SVD: learning a discriminative dictionary for recognition, IEEE Trans. Pattern Anal. Mach. Intell., 35, 11, 2651-2664 (2013)
[41] He, X.; Yan, S.; Hu, Y.; Niyogi, P.; Zhang, H., Face recognition using Laplacianfaces, IEEE Trans. Pattern. Anal. Mach. Intell., 27, 3, 328-340 (2005)
[44] Yan, S.; Xu, D.; Zhang, B.; Zhang, H.; Yang, Q.; Lin, S., Graph embedding and extensions: a general framework for dimensionality reduction, IEEE Trans. Pattern Anal. Mach. Intell., 29, 1, 40-51 (2007)
[47] Nie, F. P.; Xu, D.; Li, X. L.; Xiang, S. M., Semi-supervised dimensionality reduction and classification through virtual label regression, IEEE Trans. Syst., Man Cybern. Part B: Cybern., 41, 3, 675-685 (2011)
[48] Nie, F. P.; Xu, D.; Tsang, I. W.; Zhang, C. S., Flexible manifold embedding: a framework for semi-supervised and unsupervised dimension reduction, IEEE Trans. Image Process., 19, 7, 1921-1932 (2010) · Zbl 1371.94276
[51] Xiang, S. M.; Nie, F. P.; Zhang, C. S., Semi-supervised classification via local spline regression, IEEE Trans. Pattern Anal. Mach. Intell., 32, 11, 2039-2053 (2010)
[53] Lu, Z. W.; Wang, L. W., Noise-robust semi-supervised learning via fast sparse coding, Pattern Recognit., 48, 2, 605-612 (2015) · Zbl 1373.68325
[54] Hull, J., A database for handwritten text recognition research, IEEE Trans. Pattern Anal. Mach. Intell., 16, 5, 550-554 (1994)
[55] Liu, G. C.; Lin, Z. C.; Yan, S. C.; Sun, J.; Yu, Y.; Ma, Y., Robust recovery of subspace structures by low-rank representation, IEEE Trans. Pattern Anal. Mach. Intell., 35, 1, 171-184 (2013)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.