×

Identification of fractional water transport model with \(\psi \)-Caputo derivatives using particle swarm optimization algorithm. (English) Zbl 1474.35639

Summary: The paper studies a \(\psi \)-Caputo space-time-fractional moisture transport model stated in terms of water head. We consider a functional parameter of \(\psi \)-Caputo derivatives in power and sigmoid forms and use particle swarm optimization algorithm to identify model’s parameters. Input data for the identification were acquired on the irrigated field in the South of Ukraine within one irrigation cycle. Direct problems were solved using a finite-difference scheme. In these conditions, application of a fractional model with the classic Caputo derivative allowed more than \(\sim 2\)-times lowering of average absolute error compared to the integer-order model. The usage of functional parameter in power form allowed up to 19% accuracy enhancement compared to the classic Caputo derivative while the usage of sigmoid function up to 2.6-times lowers the error. Such behaviour remains when predicting soil moisture dynamics within the following irrigation cycles.

MSC:

35R11 Fractional partial differential equations
90C59 Approximation methods and heuristics in mathematical programming
Full Text: DOI

References:

[1] Pachepsky, Y.; Timlin, D., Water transport in soils as in fractal media, J. Hydrol. (Amst.), 204, 98-107 (1998)
[2] Pachepsky, Y.; Benson, D.; Rawls, W., Simulating scale-dependent solute transport in soils with the fractional advective-dispersive equation, Soil Sci. Soc. Am. J., 64, 1234-1243 (2000)
[3] Pachepsky, Y.; Timlin, D.; Rawls, W., Generalized Richards’ equation to simulate water transport in unsaturated soils, J. Hydrol. (Amst.), 272, 3-13 (2003)
[4] Sun, H.; Meerschaert, M.; Zhang, Y.; Zhu, J.; Chen, W., A fractal richards’ equation to capture the non-Boltzmann scaling of water transport in unsaturated media, Adv. Water Resour., 52, 292-295 (2013)
[5] Kavvas, M.; Tu, T.; Ercan, A.; Polsinelli, J., Fractional governing equations of transient groundwater flow in confined aquifers with multi-fractional dimensions in fractional time, Earth Syst. Dynam., 8, 921-929 (2017)
[6] Kavvas, M.; Ercan, A.; Polsinelli, J., Governing equations of transient soil water flow and soil water flux in multi-dimensional fractional anisotropic media and fractional time, Hydrol. Earth Syst. Sci., 21, 1547-1557 (2017)
[7] Tu, T.; Ercan, A.; Kavvas, M., Time-space fractional governing equations of transient groundwater flow in confined aquifers: numerical investigation, Hydrol. Process., 32, 1406-1419 (2018)
[8] Jarad, F.; Abdeljawad, T.; Baleanu, D., On the generalized fractional derivatives and their caputo modification, J. Nonlinear Sci. Appl., 10, 2607-2619 (2017) · Zbl 1412.26006
[9] Osler, T., Fractional derivatives of a composite function, SIAM J. Math. Anal., 1, 288-293 (1970) · Zbl 0201.44201
[10] Kilbas, A.; Srivastava, H.; Trujillo, J., Theory and Applications of Fractional Differential Equations (2006), Elsevier Science B.V., Amsterdam · Zbl 1092.45003
[11] Yang, X. J.; Tenreiro Machado, J. A., A new fractional operator of variable order: application in the description of anomalous diffusion, Physica A, 481, 276-283 (2017) · Zbl 1495.35204
[12] Anderson, D.; Ulness, D., Newly defined conformable derivatives, Adv. Dyn. Syst. Appl., 10, 109-137 (2015)
[13] Zheng, Z.; Zhao, W.; Dai, H., A new definition of fractional derivative, Int. J. Non Linear Mech., 108, 1-6 (2019)
[14] Wu, G.-C.; Deng, Z.-G.; Baleanu, D.; Zeng, D.-Q., New variable-order fractional chaotic systems for fast image encryption, Chaos, 29, 083103 (2019) · Zbl 1420.34028
[15] Gong, C.; Bao, W.; Liu, J., A piecewise memory principle for fractional derivatives, Fract. Calc. Appl. Anal., 20, 4, 1010-1022 (2017) · Zbl 1376.65025
[16] Ford, N.; Simpson, A., The numerical solution of fractional differential equations: speed versus accuracy, Numer. Algorithms, 26, 4, 333-346 (2001) · Zbl 0976.65062
[17] Wei, Y.; Chen, Y.; Cheng, S.; Wang, Y., A note on short memory principle of fractional calculus, Fract. Calc. Appl. Anal., 20, 6, 1382-1404 (2001) · Zbl 1391.26026
[18] Atanackovic, T.; Stankovic, B., On a numerical scheme for solving differential equations of fractional order, Mech. Res. Comm., 35, 7, 429-438 (2008) · Zbl 1258.65103
[19] Baffet, D.; Hesthaven, J., A kernel compression scheme for fractional differential equations, SIAM J. Numer. Anal., 55, 2, 496-520 (2017) · Zbl 1359.65106
[20] Bohaienko, V., Parallel algorithms for modelling two-dimensional non-equilibrium salt transfer processes on the base of fractional derivative model, Fract. Calc. Appl. Anal., 21, 3, 654-671 (2018) · Zbl 1436.65097
[21] Bohaienko, V., A fast finite-difference algorithm for solving space-fractional filtration equation with a generalised caputo derivative, Comput. Appl. Math., 38, 3, 105 (2019) · Zbl 1438.35425
[22] Almeida, R., A caputo fractional derivative of a function with respect to another function, Commun. Nonlinear Sci. Numer. Simul., 44, 460-481 (2017) · Zbl 1465.26005
[23] Zhang, Y., Comprehensive survey on particle swarm optimization algorithm and its applications, Commun. Nonlinear Sci. Numer. Simul., 931256 (2015) · Zbl 1394.90588
[24] Wheatcraft, S.; Meerschaert, M., Fractional conservation of mass, Adv. Water Resour., 31, 1377-1381 (2008)
[25] Katugampola, U., New approach to generalized fractional derivatives, Bul. Math. Anal. Appl., 6, 1-15 (2014) · Zbl 1317.26008
[26] van Genuchten, M., A closed-form equation for predicting the hydraulic conductivity of unsaturated soils, Soil Sci. Soc. Am. J., 44, 884-900 (1980)
[27] van Dam, J.; Feddes, R., Numerical simulation of infiltration, evaporation and shallow groundwater levels with the richards equation, J. Hydrol. (Amst.), 233, 72-85 (2000)
[28] Molz, F.; Remson, I., Extraction term models of soil moisture use by transpiring plants, Water Resour. Res., 6, 1346-1356 (1970)
[29] Gigante, V.; Iacobellis, V.; Manfreda, S.; Milella, P.; Portoghese, I., Influences of leaf area index estimations on water balance modeling in a mediterranean semi-arid basin, Nat. Hazards Earth Syst. Sci., 9, 979-991 (2009)
[30] Liu, J.; Pattey, E.; Jago, G., Assessment of vegetation indices for regional crop green LAI estimation from landsat images over multiple growing seasons, Remote Sens. Environ., 123, 347-358 (2012)
[31] Shtoiko, D.; Pisarenko, V.; Bychko, O.; Elazhenko, L., Computational methods for determination of total evaporation and irrigation periods of crops (in Ukrainian), Zroshuvane Zemlerobstvo, 3-8 (1977)
[32] Gomez-Aguilar, J.; Miranda-Hernandez, M.; Lopez-Lopez, M.; Alvarado-Martinez, V.; Baleanu, D., Modeling and simulation of the fractional space-time diffusion equation, Commun. Nonlinear Sci. Numer. Simul., 30, 115-127 (2016) · Zbl 1489.78003
[33] Bulavatsky, V., Numerical modeling of the dynamics of a convection diffusion process locally non-equilibrium in time, Cybern. Syst. Anal., 48, 6, 861-869 (2012) · Zbl 1381.76337
[34] Bogaenko, V.; Bulavatsky, V.; Kryvonos, I., On mathematical modeling of fractional-differential dynamics of flushing process for saline soils with parallel algorithms usage, J. Autom. Inf. Sci., 10, 1-12 (2016)
[35] Samarskii, A., The Theory of Difference Schemes (2001), CRC Press, New York · Zbl 0971.65076
[36] Bohaienko, V., Efficient computation schemes for generalized two-dimensional time-fractional diffusion equation, International scientific and practical conference ITCM - 2019, Ivano-Frankivsk, Ukraine, 238-241 (2019)
[37] Sun, H.; Yu, J.; Zhang, X.; Wang, B.; Jia, R., The adaptive particle swarm optimization technique for solving microseismic source location parameters, Nonlin. Processes Geophys., 26, 163-173 (2019)
[38] Kolomiets, S.; Jatsyk, M.; Kovalchuk, V.; Puzhaj, O., Soil and hydrophysical support of mathematical modeling of water regime of reclaimed lands (in ukrainian), Melioratsiia i vodne hospodarstvo, 95, 65-75 (2005)
[39] Averyanov, S., Filtration from canals and its influence on groundwater regime (in russian) (1982), Kolos, Moscow
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.