×

On the non-vanishing of the powers of the Euler class for mapping class groups. (English) Zbl 1490.57015

Let \(\Gamma_{g}^{1}\) be the mapping class group of a surface \(\Sigma_{g}^{1}\) of genus \(g\geq 1\) and one marked point. Using the monomorphism \(\rho:\Gamma_{g}^{1}\hookrightarrow \mathrm{Homeo}_{+}(\mathbb{S}^{1})\) one pulls back the discrete universal Euler class \(\mathbf{E}\in H^{2} (\mathrm{Homeo}_{+}(\mathbb{S}^{1});\mathbb{Z})\) to \(E\in H^{2}(\Gamma_{g}^{1};\mathbb{Z})\). By naturality \(\mathbf{E}^{n}\) pulls back to \(E^{n}\in H^{2n}(\Gamma_{g}^{1};\mathbb{Z})\). The main theorem asserts that the classes \(E^{n}\) are nonzero for \(g\geq1\) and \(n\geq 1\). Furthermore, for \(n\geq g\) the subgroup of \(H^{2n}(\Gamma_{g}^{1};\mathbb{Z})\) generated by the class \(E^{n}\) is a finite cyclic group of order a multiple of \(4g(2g+1)\). The authors detect torsion classes by pulling back the Euler class to finite subgroups of \(\mathrm{Homeo}_{+}(\mathbb{S}^{1})\). The authors also prove a vanishing result for powers of the Euler class in the cohomology of pure mapping class groups. Namely, let \(1\leq i\leq k\), then the powers \(E^{n}_{i}\in H^{2n}(\Gamma_{g}^{k};\mathbb{Q})\) vanish for all \(n\geq g\).

MSC:

57K20 2-dimensional topology (including mapping class groups of surfaces, Teichmüller theory, curve complexes, etc.)
55R40 Homology of classifying spaces and characteristic classes in algebraic topology
Full Text: DOI

References:

[1] Benson, DJ; Cohen, FR, Mapping class groups of low genus and their cohomology, Mem. Am. Math. Soc., 90, 443, iv+104 (1991) · Zbl 0732.57003
[2] Bödigheimer, C.F., Tillmann, U.: Stripping and splitting decorated mapping class groups. Cohomological methods in homotopy theory (Bellaterra, 1998), 47-57, Progr. Math., 196, Birkhäuser, Basel, (2001) · Zbl 0992.57014
[3] Faber, C.: A conjectural description of the tautological ring of the moduli space of curves. In Moduli of Curves and Abelian Varieties, Aspects Math., E33, pages 109-129. Friedr. Vieweg, Braunschweig, (1999) · Zbl 0978.14029
[4] Farb, B.; Margalit, D., A Primer on Mapping Class Groups. Princeton Mathematical Series 49 (2012), Princeton: Princeton University Press, Princeton
[5] Ghys, E., Groups acting on the circle, Enseign. Math. (2), 47, 3-4, 329-407 (2001) · Zbl 1044.37033
[6] Glover, H., Mislin, G.: Torsion in the mapping class group and its cohomology. Proceedings of the Northwestern conference on cohomology of groups (Evanston, Ill., 1985). J. Pure Appl. Algebra 44(1-3), 177-189 (1987) · Zbl 0617.57005
[7] Hain, R.; Looijenga, E., Mapping class groups and moduli spaces of curves. Algebraic geometry-Santa Cruz, Proc. Sympos. Pure. Math. AMS, 62, 97-142 (1997) · Zbl 0914.14013 · doi:10.1090/pspum/062.2/1492535
[8] Handel, M.; Thurston, W., New proofs of some results of Nielsen, Adv. Math., 56, 2, 173-191 (1985) · Zbl 0584.57007 · doi:10.1016/0001-8708(85)90028-3
[9] Harer, JL, The second homology group of the mapping class group of an orientable surface, Invent. Math., 72, 221-239 (1983) · Zbl 0533.57003 · doi:10.1007/BF01389321
[10] Harer, JL, Stability of the homology of the mapping class groups of orientable surfaces, Ann. of Math. (2), 121, 2, 215-249 (1985) · Zbl 0579.57005 · doi:10.2307/1971172
[11] Ionel, E-N, Topological recursive relations in \(H^{2g}({\cal{M}}_{g, n})\), Invent. Math., 148, 627-658 (2002) · Zbl 1056.14076 · doi:10.1007/s002220100205
[12] Jekel, S., Vanishing powers of the Euler class, Topology., 40, 871-926 (2001) · Zbl 0989.57016 · doi:10.1016/S0040-9383(99)00085-3
[13] Jekel, S., Powers of the Euler class, Adv. Math., 229, 1949-1975 (2012) · Zbl 1242.57021 · doi:10.1016/j.aim.2011.12.004
[14] Korkmaz, M.; Stipsicz, AI, The second homology group of mapping class groups of oriented surfaces, Math. Proc. Cambridge Philos. Soc., 134, 479-489 (2003) · Zbl 1040.57012 · doi:10.1017/S0305004102006461
[15] Looijenga, E., On the tautological ring of \({{\cal{M}}}_g\), Invent. Math, 121, 411-419 (1995) · Zbl 0851.14017 · doi:10.1007/BF01884306
[16] Lu, Q., Periodicity of the punctured mapping class group, J. Pure Appl. Algebra, 155, 2-3, 211-235 (2001) · Zbl 0964.57017 · doi:10.1016/S0022-4049(99)00112-7
[17] Lu, Q., Farrell cohomology of low genus pure mapping class groups with punctures, Algebr. Geom. Topol., 2, 537-562 (2002) · Zbl 1025.57023 · doi:10.2140/agt.2002.2.537
[18] MacLane, S.: Homology. Reprint of the 1975 edition. Springer-Verlag, Berlin-New York. 422 pp (1994)
[19] Madsen, I., Weiss, M.: The stable moduli space of Riemann surfaces: Mumford’s conjecture. Ann. of Math. (2), 165 (2007) · Zbl 1156.14021
[20] Mather, JN, The vanishing of the homology of certain groups of homeomorphisms, Topology, 10, 297-298 (1971) · Zbl 0207.21903 · doi:10.1016/0040-9383(71)90022-X
[21] Miller, EY, The homology of the mapping class group, J. Differ. Geom., 24, 1, 1-14 (1986) · Zbl 0618.57005 · doi:10.4310/jdg/1214440254
[22] Milnor, J.: Introduction to algebraic K-theory. Annals of Mathematics Studies, No. 72. Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo. xiii+184 pp (1971) · Zbl 0237.18005
[23] Morita, S., Characteristic classes of surface bundles, Invent. Math., 90, 3, 551-577 (1987) · Zbl 0608.57020 · doi:10.1007/BF01389178
[24] Thurston, W., Foliations and groups of diffeomorphisms, Bull. Am. Math. Soc., 80, 304-307 (1974) · Zbl 0295.57014 · doi:10.1090/S0002-9904-1974-13475-0
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.