×

On the finiteness of accessibility test for nonlinear discrete-time systems. (English) Zbl 1478.93040

Summary: It is shown that for two large subclasses of discrete-time nonlinear systems – analytic systems defined on a compact state space and rational systems – the minimum length \(r^\ast\) for input sequences, called here accessibility index of the system, can be found, such that from any point \(x\), system is accessible if it is accessible for input sequences of length \(r^\ast\). Algorithms are presented to compute \(r^\ast\), as well as an upper bound for it, which can be computed easier, and hence provide finite tests for determination of accessibility. The algorithms also show how to construct the set of points from which the system is not accessible in any finite number of steps. Finally, some relations between generic accessibility of the system and accessibility of individual points in finite steps are given.

MSC:

93B03 Attainable sets, reachability
93C55 Discrete-time control/observation systems
93C10 Nonlinear systems in control theory

References:

[1] Abraham, R.; Marsden, J. E.; Ratiu, T., Manifolds, tensor analysis, and applications (1988), New York, NY: Springer-Verlag, New York, NY · Zbl 0875.58002
[2] Albertini, F.; Sontag, E. D., Discrete-time transitivity and accessibility: Analytic systems, SIAM Journal on Control and Optimization, 31, 6, 1599-1622 (1993) · Zbl 0792.93012 · doi:10.1137/0331075
[3] Andradas, C.; Bröcker, L.; Ruiz, J. M., Constructible sets in real geometry, 33 (1996), Berlin: Springer-Verlag, Berlin · Zbl 0873.14044
[4] Aranda-Bricaire, E.; Kotta, Ü.; Moog, C., Linearization of discrete-time systems, SIAM Journal on Control and Optimization, 34, 6, 1999-2023 (1996) · Zbl 0863.93014 · doi:10.1137/S0363012994267315
[5] Bartosiewicz, Z., Local observability of nonlinear systems, Systems & Control Letters, 25, 4, 295-298 (1995) · Zbl 0877.93010 · doi:10.1016/0167-6911(94)00074-6
[6] Bartosiewicz, Z., Algebraic criteria of global observability of polynomial systems, Automatica, 69, 210-213 (2016) · Zbl 1338.93087 · doi:10.1016/j.automatica.2016.02.033
[7] Bochnak, J.; Coste, M.; Roy, M.-F., Real algebraic geometry, 36 (1998), Berlin: Springer-Verlag, Berlin · Zbl 0633.14016
[8] Cox, D.; Little, J.; O’Shea, D., Ideals, Varieties, and Algorithms (1992), New York, NY: Springer, New York, NY · Zbl 0756.13017
[9] Grizzle, J., A linear algebraic framework for the analysis of discrete-time nonlinear systems, SIAM Journal on Control and Optimization, 31, 4, 1026-1044 (1993) · Zbl 0785.93036 · doi:10.1137/0331046
[10] Jakubczyk, B.; Sontag, E. D., Controllability of nonlinear discrete-time systems: A lie-algebraic approach, SIAM Journal on Control and Optimization, 28, 1, 1-33 (1990) · Zbl 0693.93009 · doi:10.1137/0328001
[11] Kawano, Y.; Ohtsuka, T., Observability at an initial state for polynomial systems, Automatica, 49, 5, 1126-1136 (2013) · Zbl 1319.93015 · doi:10.1016/j.automatica.2013.01.020
[12] Kawano, Y.; Ohtsuka, T., Simple sufficient conditions for reachability of discrete-time polynomial systems, IEEE Transactions on Automatic Control, 58, 12, 3203-3206 (2013) · Zbl 1369.93072 · doi:10.1109/TAC.2013.2261184
[13] Kawano, Y.; Ohtsuka, T., Commutative algebraic methods for controllability of discrete-time polynomial systems, International Journal of Control, 89, 2, 343-351 (2016) · Zbl 1332.93054 · doi:10.1080/00207179.2015.1076939
[14] Kawski, M. (2006). On the problem whether controllability is finitely determined. Proceedings of MTNS’ 06, Kyoto, Japan.
[15] Lang, S., Algebra (1970), Boston: Addison-Wesley Publishing Company, Boston · Zbl 0216.06001
[16] Mullari, T.; Kotta, Ü.; Bartosiewicz, Z.; Pawłuszewicz, E.; Moog, C. H., Forward and backward shifts of vector fields: Towards the dual algebraic framework, IEEE Transactions on Automatic Control, 62, 6, 3029-3033 (2017) · Zbl 1369.93147 · doi:10.1109/TAC.2016.2608718
[17] Mullari, T.; Kotta, Ü.; Bartosiewicz, Z.; Sarafrazi, M. A.; Moog, C. H.; Pawluszewicz, E., Weak reachability and controllability of discrete-time nonlinear systems: Generic approach and singular points, International Journal of Control, 1-7 (2018)
[18] Nesic, D. (1998). Two algorithms arising in analysis of polynomial models. Proceedings of the 1998 American control conference. ACC (IEEE Cat. No. 98CH36207) (Vol. 3, pp. 1889-1893), Philadelphia, PA, USA.
[19] Nesic, D.; Mareels, I., Dead beat controllability of polynomial systems: Symbolic computation approaches, IEEE Transactions on Automatic Control, 43, 2, 162-175 (1998) · Zbl 0907.93038 · doi:10.1109/9.661065
[20] Nesic, D.; Mareels, I. M., Controllability of structured polynomial systems, IEEE Transactions on Automatic Control, 44, 4, 761-764 (1999) · Zbl 1073.93508 · doi:10.1109/9.754813
[21] Rieger, K.; Schlacher, K., Implicit discrete-time systems and accessibility, Automatica, 47, 9, 1849-1859 (2011) · Zbl 1227.93076 · doi:10.1016/j.automatica.2011.05.006
[22] Risler, J.-J., Le théorème des zéros en géométries algébrique et analytique réelles, Bulletin de la Société Mathématique de France, 104, 113-127 (1976) · Zbl 0328.14001 · doi:10.24033/bsmf.1819
[23] Weiss, L., Controllability, realization and stability of discrete-time systems, SIAM Journal on Control, 10, 2, 230-251 (1972) · Zbl 0238.93007 · doi:10.1137/0310019
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.