×

A posteriori finite-volume local subcell correction of high-order discontinuous Galerkin schemes for the nonlinear shallow-water equations. (English) Zbl 07517733

Summary: We design and analyze a new discretization method for the nonlinear shallow water equations, which is based on an equivalent representation of arbitrary high-order Discontinuous Galerkin (DG) schemes through piecewise constant modes on a sub-grid, together with a selective a posteriori local correction of the sub-interface reconstructed flux. This new approach, based on [F. Vilar, J. Comput. Phys. 387, 245–279 (2019; Zbl 1452.65251)], allows to combine at the subcell scale the excellent robustness properties of the Finite-Volume (FV) lowest-order method and the high-order accuracy of the DG method. For any order of polynomial approximation, the resulting algorithm is shown to: (i) accurately handle strong shocks with no robustness issues; (ii) ensure the preservation of the water height positivity at the subcell level; (iii) preserve the class of motionless steady states (well-balancing); (iv) retain the highly accurate subcell resolution of DG schemes. These assets are numerically illustrated through an extensive set of test-cases, with a particular emphasize put on the use of very-high order polynomial approximations on coarse grids.

MSC:

65Mxx Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems
76Mxx Basic methods in fluid mechanics
76Bxx Incompressible inviscid fluids

Citations:

Zbl 1452.65251

Software:

MOOD
Full Text: DOI

References:

[1] Aizinger, V.; Dawson, C., A discontinuous Galerkin method for two-dimensional flow and transport in shallow water, Adv. Water Resour., 25, 67-84 (2002)
[2] Alcrudo, F.; Garcia-Navarro, P., A high-resolution Godunov-type scheme in finite volumes for the 2D shallow-water equations, Int. J. Numer. Methods Fluids (1993) · Zbl 0766.76067
[3] Allaneau, Y.; Jameson, A., Connections between the filtered discontinuous Galerkin method and the flux reconstruction approach to high order discretizations, Comput. Methods Appl. Mech. Eng., 200, 3628-3636 (2011) · Zbl 1239.65061
[4] Ambati, V. R.; Bokhove, O., Space-time discontinuous Galerkin finite element method for shallow water flows, J. Comput. Appl. Math., 204, 452-462 (2007) · Zbl 1117.35322
[5] Anastasiou, K.; Chan, C. T., Solution of the 2D shallow water equations using the finite volume method on unstructured triangular meshes, Int. J. Numer. Methods Fluids, 24, 1225-1245 (1997) · Zbl 0886.76064
[6] Arpia, L.; Ricchiuto, M., Well balanced residual distribution for the ALE spherical shallow water equations on moving adaptive meshes, J. Comput. Phys., 405, 109-173 (2019)
[7] Audusse, E.; Bouchut, F.; Bristeau, M.-O.; Klein, R.; Perthame, B., A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows, SIAM J. Sci. Comput., 25, 6, 2050-2065 (2004) · Zbl 1133.65308
[8] Balsara, D.; Altmann, C.; Munz, C. D.; Dumbser, M., A sub-cell based indicator for troubled zones in RKDG schemes and a novel class of hybrid RKDG+HWENO schemes, J. Comput. Phys., 226, 586-620 (2007) · Zbl 1124.65072
[9] Barros, S. R.M.; Cardenas, J. W., A nonlinear Galerkin method for the shallow-water equations on periodic domains, J. Comput. Phys., 172, 592-608 (2001) · Zbl 1002.76087
[10] Bermudez, A.; Dervieux, A.; Desideri, J.-A.; Vazquez, M. E., Upwind schemes for the two-dimensional shallow water equations with variable depth using unstructured meshes, Comput. Methods Appl. Mech. Eng., 155, 49-72 (1998) · Zbl 0961.76047
[11] Bermudez, Alfredo; Vazquez, Ma Elena, Upwind methods for hyperbolic conservation laws with source terms, Comput. Fluids, 23, 8, 1049-1071 (1994) · Zbl 0816.76052
[12] Bernard, P.-E.; Remacle, J.-F.; Comblen, R.; Legat, V.; Hillewaert, K., High-order discontinuous Galerkin schemes on general 2D manifolds applied to the shallow water equations, J. Comput. Phys., 228, 6514-6535 (2009) · Zbl 1261.76026
[13] Berthon, C.; Marche, F., A positive preserving high order VFRoe scheme for shallow water equations: a class of relaxation schemes, SIAM J. Sci. Comput., 30, 5, 2587-2612 (2008) · Zbl 1358.76053
[14] Biswas, Rupak; Devine, Karen D.; Flaherty, Joseph E., Parallel, adaptive finite element methods for conservation laws, Appl. Numer. Math., 14, 255-283 (1994) · Zbl 0826.65084
[15] Bokhove, O., Flooding and drying in discontinuous Galerkin finite-element discretizations of shallow-water equations. Part 1: one dimension, J. Sci. Comput., 22-23, 47-82 (2005) · Zbl 1065.76132
[16] Bunya, S.; Kubatko, E. J.; Westerink, J. J.; Dawson, C., A wetting and drying treatment for the Runge-Kutta discontinuous Galerkin solution to the shallow water equations, Comput. Methods Appl. Mech. Eng., 198, 1548-1562 (2009) · Zbl 1227.76026
[17] Burbeau, A.; Sagaut, P.; Bruneau, C.-H., A problem-independent limiter for high-order Runge-Kutta discontinuous Galerkin methods, J. Comput. Phys., 169, 1, 111-150 (2001) · Zbl 0979.65081
[18] Busto, Saray; Dumbser, Michael; Escalante, Cipriano; Favrie, Nicolas; Gavrilyuk, Sergey, On high order ADER discontinuous Galerkin schemes for first order hyperbolic reformulations of nonlinear dispersive systems, J. Sci. Comput., 87, 2, 1-47 (2021) · Zbl 1465.76060
[19] Busto, Saray; Dumbser, Michael; Gavrilyuk, Sergey; Ivanova, Kseniya, On thermodynamically compatible finite volume methods and path-conservative ader discontinuous Galerkin schemes for turbulent shallow water flows, J. Sci. Comput., 88, 1, 1-45 (2021) · Zbl 1501.65047
[20] Canestrelli, A.; Siviglia, A.; Dumbser, M.; Toro, E. F., Well-balanced high-order centred schemes for non-conservative hyperbolic systems. Applications to shallow water equations with fixed and mobile bed, Adv. Water Resour., 32, 6, 634-644 (2009)
[21] Carrier, G.; Greenspan, H., Water waves of finite amplitude on a sloping beach, J. Fluid Mech., 2, 97-109 (1958) · Zbl 0080.19504
[22] Casoni, E.; Peraire, J.; Huerta, A., One-dimensional shock-capturing for high-order discontinuous Galerkin methods, Int. J. Numer. Methods Fluids, 71, 737-755 (2013) · Zbl 1431.65171
[23] Castro Diaz, M. J.; Lopez-Garcia, J. A.; Parès, C., High order exactly well-balanced numerical methods for shallow water systems, J. Comput. Phys., 246, 242-264 (2013) · Zbl 1349.76315
[24] Chen, Q.; Babuska, I., Approximate optimal points for polynomial interpolation of real functions in an interval and in a triangle, Comput. Methods Appl. Mech. Eng., 128, 405-417 (1995) · Zbl 0862.65006
[25] Clain, S.; Diot, S.; Loubère, R., A high-order finite volume method for systems of conservation laws—multi-dimensional optimal order detection (MOOD), J. Comput. Phys., 230, 4028-4050 (2011) · Zbl 1218.65091
[26] Cockburn, B.; Hou, S.; Shu, C.-W., The Runge-Kutta discontinuous Galerkin method for conservation laws V: multidimensional systems, J. Comput. Phys., 141, 199-224 (1998) · Zbl 0920.65059
[27] Cockburn, B.; Shu, C.-W., TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. II. General framework, Math. Comput., 52, 411-435 (1989) · Zbl 0662.65083
[28] Cockburn, B.; Shu, C.-W., The Runge-Kutta discontinuous Galerkin method for conservation laws V: multidimensional systems, J. Comput. Phys., 141, 2, 199-224 (1998) · Zbl 0920.65059
[29] Cockburn, B.; Shu, C.-W., Runge-Kutta discontinuous Galerkin methods for convection-dominated problems, J. Sci. Comput., 16, 3, 173-260 (2001) · Zbl 1065.76135
[30] de la Rosa, J. N.; Munz, C. D., Hybrid DG/FV schemes for magnetohydrodynamics and relativistic hydrodynamics, Comput. Phys. Commun., 222, 113-135 (2018) · Zbl 07693039
[31] de Saint-Venant, A. J.-C., Théorie du mouvement non-permanent des eaux, avec application aux crues des rivières et à l’introduction des marées dans leur lit, C. R. Acad. Sci. Paris, Sect. Méc., 73, 147-154 (1871) · JFM 03.0482.04
[32] Delestre, O.; Marche, F., A numerical scheme for a viscous shallow water model with friction, J. Sci. Comput., 48, 1-3, 41-51 (2011) · Zbl 1426.76355
[33] Diot, S.; Clain, S.; Loubère, R., Improved detection criteria for the multi-dimensional optimal order detection (MOOD) on unstructured meshes with very high-order polynomials, Comput. Fluids, 64, 43-63 (2012) · Zbl 1365.76149
[34] Diot, S.; Loubère, R.; Clain, S., The MOOD method in the three-dimensional case: very-high-order finite volume method for hyperbolic systems, Int. J. Numer. Methods Fluids, 73, 362-392 (2013) · Zbl 1455.65147
[35] Kuzmin, D., Slope limiting for discontinuous Galerkin approximations with a possibly non-orthogonal Taylor basis, Int. J. Numer. Methods Fluids, 71, 9, 1178-1190 (2013) · Zbl 1431.65173
[36] Dumbser, M.; Loubère, R., A simple robust and accurate a posteriori sub-cell finite volume limiter for the discontinuous Galerkin method on unstructured meshes, J. Comput. Phys., 319, 163-199 (2016) · Zbl 1349.65447
[37] Dumbser, M.; Zanotti, O.; Loubère, R.; Diot, S., A posteriori subcell limiting of the discontinuous Galerkin finite element method for hyperbolic conservation laws, J. Comput. Phys., 278, 47-75 (2014) · Zbl 1349.65448
[38] Duran, A.; Marche, F., Recent advances on the discontinuous Galerkin method for shallow water equations with topography source terms, Comput. Fluids, 101, 88-104 (2014) · Zbl 1391.76320
[39] Erduran, K. S.; Kutija, V.; Hewett, C. J.M., Performance of finite volume solutions to the shallow water equations with shock-capturing schemes, Int. J. Numer. Methods Fluids, 40, 1237-1273 (2002) · Zbl 1047.76059
[40] Ern, A.; Piperno, S.; Djadel, K., A well-balanced Runge-Kutta discontinuous Galerkin method for the shallow-water equations with flooding and drying, Int. J. Numer. Methods Fluids, 58, 1, 1-25 (2008) · Zbl 1142.76036
[41] Eskilsson, C.; Sherwin, S. J., Discontinuous Galerkin spectral/hp element modelling of dispersive shallow water systems, J. Sci. Comput., 22, 269-288 (2005) · Zbl 1067.76057
[42] Feistauer, M.; Dolejší, V.; Kučera, V., On the discontinuous Galerkin method for the simulation of compressible flow with wide range of Mach numbers, Comput. Vis. Sci., 10, 1, 17-27 (2007)
[43] Fraccarollo, L.; Toro, E. F., Experimental and numerical assessment of the shallow water model for two-dimensional dam-break type problems, J. Hydraul. Res., 33, 6, 843-863 (1995)
[44] Gallardo, J. M.; Parés, C.; Castro, M., On a well-balanced high-order finite volume scheme for shallow water equations with topography and dry areas, J. Comput. Phys., 227, 1, 574-601 (2007) · Zbl 1126.76036
[45] Gao, H.; Wang, Z. J., A conservative correction procedure via reconstruction formulation with the Chain-Rule divergence evaluation, J. Comput. Phys., 232, 7-13 (2013)
[46] Giraldo, F. X.; Hesthaven, J. S.; Warburton, T., Nodal high-order discontinuous Galerkin methods for the spherical shallow water equations, J. Comput. Phys., 181, 2, 499-525 (2002) · Zbl 1178.76268
[47] Gottlieb, S.; Shu, C.-W.; Tadmor, E., Strong stability preserving high order time discretization methods, SIAM Rev., 43, 89-112 (2001) · Zbl 0967.65098
[48] Goutal, N., Proceedings of the 2nd Workshop on Dam-Break Wave Simulation (1997), Department Laboratoire National d’Hydraulique, Groupe Hydraulique Fluviale
[49] Guermond, J.-L.; Pasquetti, R.; Popov, B., Entropy viscosity method for nonlinear conservation laws, J. Comput. Phys., 230, 4248-4267 (2011) · Zbl 1220.65134
[50] Harris, R.; Wang, Z. J.; Liu, Y., Efficient quadrature-free high-order spectral volume method on unstructured grids: theory and 2D implementation, J. Comput. Phys., 227, 1620-1642 (2008) · Zbl 1134.65070
[51] Huerta, A.; Casoni, E.; Peraire, J., A simple shock-capturing technique for high-order discontinuous Galerkin methods, Int. J. Numer. Methods Fluids, 69, 1614-1632 (2012) · Zbl 1253.76058
[52] Huynh, H. T., A flux reconstruction approach to high-order schemes including discontinuous Galerkin methods, (18th AIAA Computational Fluid Dynamics Conference. 18th AIAA Computational Fluid Dynamics Conference, Miami (2007))
[53] Huynh, H. T.; Wang, Z. J.; Vincent, P. E., High-order methods for computational fluid dynamics: a brief review of compact differential formulations on unstructured grids, J. Comput. Phys., 98, 209-220 (2014) · Zbl 1390.65123
[54] Ioriatti, M.; Dumbser, M., A posteriori sub-cell finite volume limiting of staggered semi-implicit discontinuous Galerkin schemes for the shallow water equations, Appl. Numer. Math., 135, 443-480 (2019) · Zbl 1403.76046
[55] Iskandarani, M.; Haidvogel, D. B.; Boyd, J. P., A staggered spectral element model with application to the oceanic shallow water equations, Int. J. Numer. Methods Fluids, 20, 5, 393-414 (1995) · Zbl 0870.76057
[56] Park, J. S.; Kim, C., Hierarchical multi-dimensional limiting strategy for correction procedure via reconstruction, J. Comput. Phys., 308, 57-80 (2016) · Zbl 1351.76076
[57] Park, J. S.; Yoon, S.-H.; Kim, C., Multi-dimensional limiting process for hyperbolic conservation laws on unstructured grids, J. Comput. Phys., 229, 788-812 (2010) · Zbl 1185.65150
[58] Jiang, G.; Shu, C.-W., Efficient implementation of weighted ENO schemes, J. Comput. Phys., 126, 1, 202-228 (1996) · Zbl 0877.65065
[59] Kesserwani, G.; Liang, Q., A discontinuous Galerkin algorithm for the two-dimensional shallow water equations, Comput. Methods Appl. Mech. Eng., 199, 49-52, 3356-3368 (2010) · Zbl 1225.76197
[60] Kesserwani, G.; Liang, Q., Well-balanced RKDG2 solutions to the shallow water equations over irregular domains with wetting and drying, Comput. Fluids, 39, 10, 2040-2050 (2010) · Zbl 1245.76068
[61] Kesserwani, G.; Liang, Q.; Vazquez, J.; Mose, R., Well-balancing issues related to the RKDG2 scheme for the shallow water equations, Int. J. Numer. Methods Fluids, 62, 428-448 (2010) · Zbl 1423.35311
[62] Kirby, R. M.; Sherwin, S. J., Stabilisation of spectral/hp element methods through spectral vanishing viscosity: application to fluid mechanics, Comput. Methods Appl. Mech. Eng., 195, 3128-3144 (2006) · Zbl 1115.76060
[63] Krivodonova, L., Limiters for high-order discontinuous Galerkin methods, J. Comput. Phys., 226, 879-896 (2007) · Zbl 1125.65091
[64] Van Leer, B., Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov’s method, J. Comput. Phys., 135, 2, 227-248 (1997) · Zbl 0939.76063
[65] Li, H.; Liu, R.-X., The discontinuous Galerkin finite element method for the 2D shallow water equations, Math. Comput. Simul., 56, 223-233 (2001) · Zbl 0987.76054
[66] Li, L.; Zhang, Q., A new vertex-based limiting approach for nodal discontinuous Galerkin methods on arbitrary unstructured meshes, Comput. Fluids, 159, 316-326 (2017) · Zbl 1390.76331
[67] Liang, C.; Ham, F.; Johnsen, E., Discontinuous Galerkin method with WENO limiter for flows with discontinuity, (Center for Turbulence Research Annual Research Briefs 2009 (2009)), 335
[68] Liang, Q.; Borthwick, A. G.L., Adaptive quadtree simulation of shallow flows with wet-dry fronts over complex topography, Comput. Fluids, 38, 2, 221-234 (2009) · Zbl 1237.76017
[69] Liang, Q.; Marche, F., Numerical resolution of well-balanced shallow water equations with complex source terms, Adv. Water Resour., 32, 6, 873-884 (2009)
[70] Lukacova, M.; Noelle, S.; Kraft, M., Well-balanced finite volume evolution Galerkin methods for the shallow water equations, J. Comput. Phys., 221, 1, 122-147 (2007) · Zbl 1123.76041
[71] Ma, Hong, A spectral element basin model for the shallow water equations, J. Comput. Phys., 109, 1, 133-149 (1993) · Zbl 0790.76065
[72] Meister, A.; Ortleb, S., On unconditionally positive implicit time integration for the DG scheme applied to shallow water flows, Int. J. Numer. Methods Fluids, 76, 69-94 (2014) · Zbl 1455.65173
[73] Meister, A.; Ortleb, S., A positivity preserving and well-balanced DG scheme using finite volume subcells in almost dry regions, Appl. Math. Comput., 272, 259-273 (2016) · Zbl 1410.76250
[74] Michel-Dansac, V., A well-balanced scheme for the shallow-water equations with topography, Comput. Math. Appl., 72, 3, 568-593 (2016) · Zbl 1359.76206
[75] Mirzaee, H.; Ji, L.; Ryan, J. K.; Kirby, R. M., Smoothness-increasing accuracy-conserving (SIAC) postprocessing for discontinuous Galerkin solutions over structured triangular meshes, SIAM J. Numer. Anal., 49, 5, 1899-1920 (2011) · Zbl 1269.65100
[76] Nair, R. D.; Thomas, S. J.; Loft, R. D., A discontinuous Galerkin global shallow water model, Mon. Weather Rev., 133, 876-888 (2004)
[77] Navon, I. M., Finite-element simulation of the shallow-water equations model on a limited-area domain, Appl. Math. Model., 3 (1979) · Zbl 0438.76017
[78] Noelle, S.; Pankratz, N.; Puppo, G.; Natvig, J. R., Well-balanced finite volume schemes of arbitrary order of accuracy for shallow water flows, J. Comput. Phys., 213, 2, 474-499 (2006) · Zbl 1088.76037
[79] Noelle, S.; Xing, Y.; Shu, C.-W., High-order well-balanced finite volume weno schemes for shallow water equation with moving water, J. Comput. Phys., 226, 1, 29-58 (2007) · Zbl 1120.76046
[80] Ozkan-Haller, H. T.; Kirby, J. T., A Fourier-Chebyshev collocation method for the shallow water equations including shoreline, Appl. Ocean Res., 19, 21-34 (1997)
[81] Persson, P.-O.; Peraire, J., Sub-cell shock capturing for discontinuous Galerkin methods, (AIAA Aerospace Sciences Meeting and Exhibit, 112 (2006))
[82] Panourgiasa, K. T.; Ekaterinaris, J. A., A nonlinear filter for high order discontinuous Galerkin discretizations with discontinuity resolution within the cell, J. Comput. Phys., 326, 234-257 (2016) · Zbl 1373.76033
[83] Patera, J.; Nassehi, V., A new two-dimensional finite element model for the shallow water equations using a Lagrangian framework constructed along fluid particle trajectories, Int. J. Numer. Methods Fluids, 39, 4159-4182 (1996) · Zbl 0898.76064
[84] Perthame, Benoît; Qiu, Youchun, A variant of Van Leer’s method for multidimensional systems of conservation laws, J. Comput. Phys., 112, 2, 370-381 (1994) · Zbl 0816.65055
[85] Qiu, J.; Shu, C.-W., A comparison of troubled-cell indicators for Runge-Kutta discontinuous Galerkin methods using weighted essentially nonoscillatory limiters, SIAM J. Sci. Comput., 27, 995-1013 (2005) · Zbl 1092.65084
[86] Qiu, J.; Shu, C.-W., Runge Kutta discontinuous Galerkin method using WENO limiters, SIAM J. Sci. Comput., 26, 907-929 (2005) · Zbl 1077.65109
[87] Ricchiuto, M., An explicit residual based approach for shallow water flows, J. Comput. Phys., 280, 306-344 (2015) · Zbl 1349.76035
[88] Ricchiuto, M.; Bollermann, A., Stabilized residual distribution for shallow water simulations, J. Comput. Phys., 228, 1071-1115 (2009) · Zbl 1330.76097
[89] Rogers, B.; Fujihara, M.; Borthwick, A., Adaptive Q-tree Godunov-type scheme for shallow water equations, Int. J. Numer. Methods Fluids, 35, 247-280 (2001) · Zbl 1012.76056
[90] Schwanenberg, D.; Harms, M., Discontinuous Galerkin finite-element method for transcritical two-dimensional shallow water flows, J. Hydraul. Eng., 130, 5, 412-421 (2004)
[91] Shu, C.-W.; Osher, S., Efficient implementation of essentially non-oscillatory shock-capturing schemes, J. Comput. Phys., 77, 439-471 (1988) · Zbl 0653.65072
[92] Sonntag, M.; Munz, C. D., Shock capturing for discontinuous Galerkin methods using finite volume subcells, (Finite Volumes for Complex Applications VII-Elliptic, Parabolic and Hyperbolic Problems (2014)), 945-953 · Zbl 1426.76429
[93] Synolakis, C. E.; Bernard, E. N.; Titov, V. V.; Kanoglu, U.; Gonzalez, F. I., Standards, criteria, and procedures for NOAA evaluation of tsunami numerical models (2007), NOAA Tech. Memo., OAR PMEL-135
[94] Tanner, J.; Tadmor, E., Adaptive mollifiers - high resolution recover of piecewise smooth data from its spectral information, Found. Comput. Math., 2, 155-189 (2002) · Zbl 1056.42002
[95] Toro, E. F., Shock-Capturing Methods for Free-Surface Shallow Flows (2001), John Wiley and Sons: John Wiley and Sons Chichester · Zbl 0996.76003
[96] Utnes, T., A finite element solution of the shallow-water wave equations, Appl. Math. Model., 14, 20-29 (1990) · Zbl 0697.76025
[97] Van der Vegt, J. J.W.; Van der Ven, H., Space-time discontinuous Galerkin finite element method with dynamic grid motion for inviscid compressible flows, J. Comput. Phys., 182, 546-585 (2002) · Zbl 1057.76553
[98] Vandeven, H., Family of spectral filters for discontinuous problems, J. Sci. Comput., 8, 159-192 (1991) · Zbl 0752.35003
[99] Vater, S.; Beisiegel, N.; Behrens, J., A limiter-based well-balanced discontinuous Galerkin method for shallow-water flows with wetting and drying: one-dimensional case, Adv. Water Resour., 85, 1-13 (2015)
[100] Vilar, F., A high-order discontinuous Galerkin discretization for solving two-dimensional Lagrangian hydrodynamics (2012), Université Bordeaux I, PhD thesis
[101] Vilar, F., A posteriori correction of high-order discontinuous Galerkin scheme through subcell finite volume formulation and flux reconstruction, J. Comput. Phys., 387, 245-279 (2019) · Zbl 1452.65251
[102] Vilar, F.; Maire, P. H.; Abgrall, R., Cell-centered discontinuous Galerkin discretizations for two-dimensional scalar conservation laws on unstructured grids and for one-dimensional Lagrangian hydrodynamics, Comput. Fluids, 46, 498-504 (2011) · Zbl 1433.76093
[103] Vincent, P. E.; Castonguay, P.; Jameson, A., A new class of high-order energy stable flux reconstruction schemes, J. Sci. Comput., 47, 50-72 (2011) · Zbl 1433.76094
[104] Vukovic, S., ENO and WENO schemes with the exact conservation property for one-dimensional shallow water equations, J. Comput. Phys., 179, 2, 593-621 (2002) · Zbl 1130.76389
[105] Wang, Z. J., High-Order Spectral Volume Method for Benchmark Aeroacoustic Problems (2003), AIAA Paper, 2003-0880
[106] Wirasaet, D.; Kubatko, E. J.; Michoski, C. E.; Tanaka, S.; Westerink, J. J., Discontinuous Galerkin methods with nodal and hybrid modal/nodal triangular, quadrilateral, and polygonal elements for nonlinear shallow water flow, Comput. Methods Appl. Mech. Eng., 270, 113-149 (2014) · Zbl 1296.76089
[107] Xing, Y.; Shu, C.-W., High order well-balanced finite volume WENO schemes and discontinuous Galerkin methods for a class of hyperbolic systems with source terms, J. Comput. Phys., 214, 567-598 (2006) · Zbl 1089.65091
[108] Xing, Y.; Shu, C.-W., A new approach of high order well-balanced finite volume WENO schemes and discontinuous Galerkin methods for a class of hyperbolic systems with source terms, Commun. Comput. Phys., 1, 100-134 (2006) · Zbl 1115.65096
[109] Xing, Y.; Zhang, X., Positivity-preserving well-balanced discontinuous Galerkin methods for the shallow water equations on unstructured triangular meshes, J. Sci. Comput., 57, 19-41 (2013) · Zbl 1282.76134
[110] Xing, Y.; Zhang, X.; Shu, C.-W., Positivity-preserving high order well-balanced discontinuous Galerkin methods for the shallow water equations, Adv. Water Resour., 33, 12, 1476-1493 (2010)
[111] Yang, M.; Wang, Z. J., A parameter-free generalized moment limiter for high-order methods on unstructured grids, Adv. Appl. Math. Mech., 4, 451-480 (2009)
[112] Zhang, X.; Shu, C.-W., On maximum-principle-satisfying high order schemes for scalar conservation laws, J. Comput. Phys., 229, 9, 3091-3120 (2010) · Zbl 1187.65096
[113] Zhang, X.; Shu, C.-W., Maximum-principle-satisfying and positivity-preserving high-order schemes for conservation laws: survey and new developments, Proc. R. Soc. A, 467, 2752-2776 (2011) · Zbl 1222.65107
[114] Zhang, X.; Xia, Y.; Shu, C.-W., Maximum-principle-satisfying and positivity-preserving high order discontinuous Galerkin schemes for conservation laws on triangular meshes, J. Sci. Comput., 50, 29-62 (2012) · Zbl 1247.65131
[115] Zhu, J.; Qiu, J.; Shu, C.-W.; Dumbser, M., Runge-Kutta discontinuous Galerkin method using WENO limiters II: unstructured meshes, J. Comput. Phys., 227, 4330-4353 (2008) · Zbl 1157.65453
[116] Zhu, J.; Zhong, X.; Shu, C.-W.; Qiu, J., Runge Kutta discontinuous Galerkin method using a new type of WENO type limiters on unstructured meshes, J. Comput. Phys., 248, 200-220 (2013) · Zbl 1349.65501
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.