×

Fifth-order A-WENO schemes based on the path-conservative central-upwind method. (English) Zbl 07592126

Summary: We develop fifth-order A-WENO finite-difference schemes based on the path-conservative central-upwind method for nonconservative one- and two-dimensional hyperbolic systems of nonlinear PDEs. The main challenges in development of accurate and robust numerical methods for the studied systems come from the presence of nonconservative products. Semi-discrete second-order finite-volume path-conservative central-upwind (PCCU) schemes recently proposed in [M. J. C. Díaz et al., ESAIM, Math. Model. Numer. Anal. 53, No. 3, 959–985 (2019; Zbl 1418.76034)] provide one with a reliable Riemann-problem-solver-free numerical method for nonconservative hyperbolic system. In this paper, we extend the PCCU schemes to the fifth-order of accuracy in the framework of A-WENO finite-difference schemes.
We apply the developed schemes to the two-layer shallow water equations. We ensure that the developed schemes are well-balanced in the sense that they are capable of exactly preserving “lake-at-rest” steady states. We illustrate the performance of the new fifth-order schemes on a number of one- and two-dimensional examples, where one can clearly see that the proposed fifth-order schemes clearly outperform their second-order counterparts.

MSC:

65Mxx Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems
35Lxx Hyperbolic equations and hyperbolic systems
76Mxx Basic methods in fluid mechanics

Citations:

Zbl 1418.76034
Full Text: DOI

References:

[1] Abgrall, R.; Karni, S., Two-layer shallow water system: a relaxation approach, SIAM J. Sci. Comput., 31, 1603-1627 (2009) · Zbl 1188.76229
[2] Berthon, C.; Foucher, F.; Morales, T., An efficient splitting technique for two-layer shallow-water model, Numer. Methods Partial Differ. Equ., 31, 1396-1423 (2015) · Zbl 1338.76073
[3] Bouchut, F., Nonlinear Stability of Finite Volume Methods for Hyperbolic Conservation Laws and Well-Balanced Schemes for Sources, Frontiers in Mathematics (2004), Birkhäuser Verlag: Birkhäuser Verlag Basel · Zbl 1086.65091
[4] Bouchut, F.; Morales de Luna, T., An entropy satisfying scheme for two-layer shallow water equations with uncoupled treatment, ESAIM Math. Model. Numer. Anal., 42, 683-698 (2008) · Zbl 1203.76110
[5] Busto, S.; Dumbser, M.; Gavrilyuk, S.; Ivanova, K., On thermodynamically compatible finite volume methods and path-conservative ADER discontinuous Galerkin schemes for turbulent shallow water flows, J. Sci. Comput., 88, Article 28 pp. (2021) · Zbl 1501.65047
[6] Castro, M. J.; Fernández-Nieto, E. D.; Ferreiro, A. M.; García-Rodríguez, J. A.; Parés, C., High order extensions of Roe schemes for two-dimensional nonconservative hyperbolic systems, J. Sci. Comput., 39, 67-114 (2009) · Zbl 1203.65131
[7] Castro, M. J.; Fjordholm, U. S.; Mishra, S.; Parés, C., Entropy conservative and entropy stable schemes for nonconservative hyperbolic systems, SIAM J. Numer. Anal., 51, 1371-1391 (2013) · Zbl 1317.65167
[8] Castro, M. J.; Kurganov, A.; Morales de Luna, T., Path-conservative central-upwind schemes for nonconservative hyperbolic systems, ESAIM Math. Model. Numer. Anal, 53, 959-985 (2019) · Zbl 1418.76034
[9] Castro, M. J.; Macías, J.; Parés, C., A Q-scheme for a class of systems of coupled conservation laws with source term. Application to a two-layer 1-D shallow water system, ESAIM Math. Model. Numer. Anal., 35, 107-127 (2001) · Zbl 1094.76046
[10] Castro, M. J.; Morales de Luna, T.; Parés, C., Well-balanced schemes and path-conservative numerical methods, (Handbook of Numerical Methods for Hyperbolic Problems. Handbook of Numerical Methods for Hyperbolic Problems, Handb. Numer. Anal., vol. 18 (2017), Elsevier/North-Holland: Elsevier/North-Holland Amsterdam), 131-175 · Zbl 1368.65131
[11] Castro, M. J.; Parés, C., Well-balanced high-order finite volume methods for systems of balance laws, J. Sci. Comput., 82, Article 48 pp. (2020) · Zbl 1440.65109
[12] Castro, M. J.; Parés, C.; Puppo, G.; Russo, G., Central schemes for nonconservative hyperbolic systems, SIAM J. Sci. Comput., 34, B523-B558 (2012) · Zbl 1255.76080
[13] Castro-Díaz, M. J.; Fernández-Nieto, E. D.; González-Vida, J. M.; Parés-Madronal, C., Numerical treatment of the loss of hyperbolicity of the two-layer shallow-water system, J. Sci. Comput., 48, 16-40 (2011) · Zbl 1416.76140
[14] Chalons, C., Path-conservative in-cell discontinuous reconstruction schemes for non conservative hyperbolic systems, Commun. Math. Sci., 18, 1-30 (2020) · Zbl 1436.35017
[15] Dal Maso, G.; Lefloch, P. G.; Murat, F., Definition and weak stability of nonconservative products, J. Math. Pures Appl., 74, 483-548 (1995) · Zbl 0853.35068
[16] Don, W. S.; Li, D.-M.; Gao, Z.; Wang, B.-S., A characteristic-wise alternative WENO-Z finite difference scheme for solving the compressible multicomponent non-reactive flows in the overestimated quasi-conservative form, J. Sci. Comput., 82, Article 27 pp. (2020) · Zbl 1448.76130
[17] Gottlieb, S.; Ketcheson, D.; Shu, C.-W., Strong Stability Preserving Runge-Kutta and Multistep Time Discretizations (2011), World Scientific Publishing Co. Pte. Ltd.: World Scientific Publishing Co. Pte. Ltd. Hackensack, NJ · Zbl 1241.65064
[18] Gottlieb, S.; Shu, C.-W.; Tadmor, E., Strong stability-preserving high-order time discretization methods, SIAM Rev., 43, 89-112 (2001) · Zbl 0967.65098
[19] Jiang, G. S.; Shu, C.-W., Efficient implementation of weighted ENO schemes, J. Comput. Phys., 126, 202-228 (1996) · Zbl 0877.65065
[20] Jiang, Y.; Shu, C.-W.; Zhang, M. P., An alternative formulation of finite difference weighted ENO schemes with Lax-Wendroff time discretization for conservation laws, SIAM J. Sci. Comput., 35, A1137-A1160 (2013) · Zbl 1266.65144
[21] Klein, R., Scale-dependent models for atmospheric flows, Annu. Rev. Fluid Mech., 42, 249-272 (1997) · Zbl 1213.86002
[22] Kurganov, A., Finite-volume schemes for shallow-water equations, Acta Numer., 27, 289-351 (2018) · Zbl 1430.76372
[23] Kurganov, A.; Levy, D., Central-upwind schemes for the Saint-Venant system, ESAIM Math. Model. Numer. Anal., 36, 397-425 (2002) · Zbl 1137.65398
[24] Kurganov, A.; Lin, C.-T., On the reduction of numerical dissipation in central-upwind schemes, Commun. Comput. Phys., 2, 141-163 (2007) · Zbl 1164.65455
[25] Kurganov, A.; Noelle, S.; Petrova, G., Semidiscrete central-upwind schemes for hyperbolic conservation laws and Hamilton-Jacobi equations, SIAM J. Sci. Comput., 23, 707-740 (2001) · Zbl 0998.65091
[26] Kurganov, A.; Petrova, G., Central-upwind schemes for two-layer shallow water equations, SIAM J. Sci. Comput., 31, 1742-1773 (2009) · Zbl 1188.76230
[27] Kurganov, A.; Prugger, M.; Wu, T., Second-order fully discrete central-upwind scheme for two-dimensional hyperbolic systems of conservation laws, SIAM J. Sci. Comput., 39, A947-A965 (2017) · Zbl 1364.76117
[28] Kurganov, A.; Tadmor, E., New high-resolution semi-discrete central schemes for Hamilton-Jacobi equations, J. Comput. Phys., 160, 720-742 (2000) · Zbl 0961.65077
[29] LeFloch, P. G., Hyperbolic systems of conservation laws, (The Theory of Classical and Nonclassical Shock Waves. The Theory of Classical and Nonclassical Shock Waves, Lectures in Mathematics ETH Zürich (2002), Birkhäuser Verlag: Birkhäuser Verlag Basel) · Zbl 1019.35001
[30] Lefloch, P. G., Graph solutions of nonlinear hyperbolic systems, J. Hyperbolic Differ. Equ., 1, 643-689 (2004) · Zbl 1071.35078
[31] Lie, K.-A.; Noelle, S., On the artificial compression method for second-order nonoscillatory central difference schemes for systems of conservation laws, SIAM J. Sci. Comput., 24, 1157-1174 (2003) · Zbl 1038.65078
[32] Liu, H., A numerical study of the performance of alternative weighted ENO methods based on various numerical fluxes for conservation law, Appl. Math. Comput., 296, 182-197 (2017) · Zbl 1411.65113
[33] Liu, H.; Qiu, J., Finite difference Hermite WENO schemes for conservation laws, II: an alternative approach, J. Sci. Comput., 66, 598-624 (2016) · Zbl 1398.65215
[34] Liu, X.; He, J., A well-balanced numerical model for depth-averaged two-layer shallow water flows, Comput. Appl. Math., 40, Article 311 pp. (2021) · Zbl 1499.76074
[35] Nessyahu, H.; Tadmor, E., Nonoscillatory central differencing for hyperbolic conservation laws, J. Comput. Phys., 87, 408-463 (1990) · Zbl 0697.65068
[36] Nonomura, T.; Fujii, K., Characteristic finite-difference WENO scheme for multicomponent compressible fluid analysis: overestimated quasi-conservative formulation maintaining equilibriums of velocity, pressure, and temperature, J. Comput. Phys., 340, 358-388 (2017) · Zbl 1376.76025
[37] Parés, C., Path-Conservative Numerical Methods for Nonconservative Hyperbolic Systems, Quad. Mat., Dept. Math., vol. 24 (2009), Seconda Univ. Napoli: Seconda Univ. Napoli Caserta · Zbl 1266.65148
[38] Pedlosky, J., Geophysical Fluid Dynamics (1987), Springer-Verlag: Springer-Verlag New York · Zbl 0713.76005
[39] Pimentel-García, E.; Castro, M. J.; Chalons, C.; Morales de Luna, T.; Parés, C., In-cell discontinuous reconstruction path-conservative methods for non conservative hyperbolic systems—second-order extension, J. Comput. Phys., 459, Article 111152 pp. (2022) · Zbl 07525142
[40] Qiu, J.; Shu, C.-W., On the construction, comparison, and local characteristic decomposition for high-order central WENO schemes, J. Comput. Phys., 183, 187-209 (2002) · Zbl 1018.65106
[41] Schneider, K. A.; Gallardo, J. M.; Balsara, D. S.; Nkonga, B.; Parés, C., Multidimensional approximate Riemann solvers for hyperbolic nonconservative systems. Applications to shallow water systems, J. Comput. Phys., 444, Article 110547 pp. (2021) · Zbl 07515448
[42] Shu, C.-W., High order weighted essentially nonoscillatory schemes for convection dominated problems, SIAM Rev., 51, 82-126 (2009) · Zbl 1160.65330
[43] Shu, C.-W., Essentially non-oscillatory and weighted essentially non-oscillatory schemes, Acta Numer., 29, 701-762 (2020) · Zbl 07674567
[44] Sweby, P. K., High resolution schemes using flux limiters for hyperbolic conservation laws, SIAM J. Numer. Anal., 21, 995-1011 (1984) · Zbl 0565.65048
[45] Vallis, G. K., Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-Scale Circulation (2006), Cambridge University Press · Zbl 1374.86002
[46] Wang, B.-S.; Don, W. S.; Garg, N. K.; Kurganov, A., Fifth-order A-WENO finite-difference schemes based on a new adaptive diffusion central numerical flux, SIAM J. Sci. Comput., 42, A3932-A3956 (2020) · Zbl 1457.65063
[47] Wang, B.-S.; Don, W. S.; Kurganov, A.; Liu, Y., Fifth-order A-WENO schemes based on the adaptive diffusion central-upwind Rankine-Hugoniot fluxes, Commun. Appl. Math. Comput. (2021)
[48] Wang, B.-S.; Li, P.; Gao, Z.; Don, W. S., An improved fifth order alternative WENO-Z finite difference scheme for hyperbolic conservation laws, J. Comput. Phys., 374, 469-477 (2018) · Zbl 1416.76194
[49] Zeitlin, V., Geophysical Fluid Dynamics: Understanding (Almost) Everything with Rotating Shallow Water Models (2018), Oxford University Press: Oxford University Press Oxford · Zbl 1382.86001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.