×

On generalized deformation problems. (English) Zbl 1533.13016

Let \((R,\mathfrak{m})\) be a Noetherian local ring, \(I\) an ideal of \(R\) such that \(pd(R/I)<\infty\). If \(R/I\) satisfies a property \(\mathcal{P}\), does it follow that \(R\) satisfies \(\mathcal{P}\)? The author is calling this the generalized deformation problem. First it is shown that the problem is solved affirmatively in the positive prime characteristic case, for F-injectivity in the Cohen-Macaulay case and for F-rationality for excellent rings. In the general case, the problem is solved affirmatively for the properties \((S_k), (R_k)\ \text{ and }\ (S_{k+1})\) and \((R_k)\) under additional assumptions, as well as for the property of being a domain.

MSC:

13D10 Deformations and infinitesimal methods in commutative ring theory
13A35 Characteristic \(p\) methods (Frobenius endomorphism) and reduction to characteristic \(p\); tight closure
13H10 Special types (Cohen-Macaulay, Gorenstein, Buchsbaum, etc.)
14B07 Deformations of singularities

References:

[1] Aberbach, Ian M., Tight closure in \(F\)-rational rings. Nagoya Math. J., 43-54 (1994) · Zbl 0804.13003
[2] Aberbach, Ian M.; Katzman, Mordechai; MacCrimmon, Brian, Weak \(F\)-regularity deforms in \(\mathbb{Q} \)-Gorenstein rings. J. Algebra, 1, 281-285 (1998) · Zbl 0915.13003
[3] Avramov, Luchezar L.; Foxby, Hans-Bjørn; Halperin, Stephen, Descent and ascent of local properties along homomorphisms of finite flat dimension. J. Pure Appl. Algebra, 2-3, 167-185 (1985) · Zbl 0603.13007
[4] Buchsbaum, David A.; Eisenbud, David, What makes a complex exact?. J. Algebra, 259-268 (1973) · Zbl 0264.13007
[5] Bruns, Winfried; Herzog, H. Jürgen, Cohen-Macaulay Rings, vol. 39 (1998), Cambridge Univ. Press: Cambridge Univ. Press Cambridge · Zbl 0909.13005
[6] Brezuleanu, A.; Rotthaus, C., Eine Bemerkung über Ringe mit geometrisch normalen formalen Fasern. Arch. Math. (Basel), 1, 19-27 (1982) · Zbl 0526.13006
[7] Dieudonné, J.; Grothendieck, A., Éléments de géométrie algéque. IV. Étude locale des schémas et des morphismes de schémas. I. Inst. Hautes Études Sci. Publ. Math., 1-259 (1964)
[8] Dieudonné, J.; Grothendieck, A., Éléments de géométrie algéque. IV. Étude locale des schémas et des morphismes de schémas. II. Inst. Hautes Études Sci. Publ. Math., 1-231 (1965) · Zbl 0135.39701
[9] Datta, Rankeya; Murayama, Takumi, Permanence properties and \(F\)-injectivity. Math. Res. Lett. (2023), in press, available at · Zbl 1536.13010
[10] Fedder, Richard, \(F\)-purity and rational singularity. Trans. Am. Math. Soc., 2, 461-480 (1983) · Zbl 0519.13017
[11] Hochster, Melvin, Foundations of tight closure theory, available at · Zbl 1094.13005
[12] Hochster, Melvin, Topics in the Homological Theory of Modules over Commutative Rings. CBMS Regional Conference Series in Mathematics (1975) · Zbl 0302.13003
[13] Hochster, Melvin; Huneke, Craig, \(F\)-regularity, test elements, and smooth base change. Trans. Am. Math. Soc., 1, 1-62 (1994) · Zbl 0844.13002
[14] Horiuchi, Jun; Miller, Lance Edward; Shimomoto, Kazuma, Deformation of \(F\)-injectivity and local cohomology. Indiana Univ. Math. J., 4, 1139-1157 (2014) · Zbl 1322.13004
[15] Hara, Nobuo; Watanabe, Kei-Ichi, \(F\)-regular and \(F\)-pure rings vs. log terminal and log canonical singularities. J. Algebraic Geom., 2, 363-392 (2002) · Zbl 1013.13004
[16] Ionescu, Cristodor, Sur les anneaux aux fibres formelles géométriquement régulières en codimension \(n\). Rev. Roum. Math. Pures Appl., 7, 599-603 (1986) · Zbl 0671.13012
[17] Ma, Linquan; Polstra, Thomas, \(F\)-singularities: a commutative algebra approach, available at · Zbl 1432.13006
[18] Matsumura, Hideyuki, Commutative Ring Theory, vol. 8 (1987), Cambridge Univ. Press: Cambridge Univ. Press Cambridge · Zbl 0639.13009
[19] Peskine, C.; Szpiro, L., Dimension projective finie et cohomologie locale. Applications à la démonstration de conjectures de M. Auslander, H. Bass et A. Grothendieck. Inst. Hautes Études Sci. Publ. Math., 42, 47-119 (1973) · Zbl 0268.13008
[20] Polstra, Thomas; Simpson, Austyn, \(F\)-purity deforms in \(\mathbb{Q} \)-Gorenstein rings. Int. Math. Res. Not. (2023), in press, available at · Zbl 07805864
[21] Roberts, Paul C., Multiplicities and Chern Classes in Local Algebra. Cambridge Tracts in Mathematics (1998) · Zbl 0917.13007
[22] Roberts, Paul C., Intersection theorems, 417-436 · Zbl 0734.13009
[23] Roberts, Paul C., Le théorėme d’intersection. C. R. Acad. Sci. Paris, Ser. I, 7, 177-180 (1987) · Zbl 0609.13010
[24] Quy, Pham Hung; Shimomoto, Kazuma, \(F\)-injective and Frobenius closure of ideals in Noetherian rings of characteristic \(p > 0\). Adv. Math., 127-166 (2017) · Zbl 1373.13004
[25] Schwede, Karl, \(F\)-adjunction. Algebra Number Theory, 8, 907-950 (2009) · Zbl 1209.13013
[26] Seydi, Hamet, La théorie des anneaux japonais (1972), Université de Rennes: Université de Rennes Rennes · Zbl 0238.13022
[27] Singh, Anurag K., Deformation of \(F\)-purity and \(F\)-regularity. J. Pure Appl. Algebra, 2, 137-148 (1999) · Zbl 0946.13001
[28] Singh, Anurag K., \(F\)-regularity does not deform. Am. J. Math., 4, 919-929 (1999) · Zbl 0946.13002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.