×

A Fock space approach to Severi degrees. (English) Zbl 1376.14055

Summary: The classical Severi degree counts the number of algebraic curves of fixed genus and class passing through points in a surface. We express the Severi degrees of \(\mathbb{P}^1\times \mathbb{P}^1\) as matrix elements of the exponential of a single operator \(\mathrm{M}_S\) on Fock space. The formalism puts Severi degrees on a similar footing as the more developed study of Hurwitz numbers of coverings of curves. The pure genus 1 invariants of the product \(E \times \mathbb{P}^1\) (with \(E\) an elliptic curve) are solved via an exact formula for the eigenvalues of \(\mathrm{M}_S\) to initial order. The Severi degrees of \(\mathbb{P}^2\) are also determined by \(\mathrm{M}_S\) via the \((-1)^{d-1}/d^2\) disk multiple cover formula for Calabi-Yau threefold geometries.

MSC:

14N35 Gromov-Witten invariants, quantum cohomology, Gopakumar-Vafa invariants, Donaldson-Thomas invariants (algebro-geometric aspects)
14H10 Families, moduli of curves (algebraic)
14H30 Coverings of curves, fundamental group
14H50 Plane and space curves
14N10 Enumerative problems (combinatorial problems) in algebraic geometry
17B65 Infinite-dimensional Lie (super)algebras

References:

[1] E.Arbarello, M.Cornalba, P.Griffiths and J.Harris, Geometry of algebraic curves (Springer, Berlin, 1985). · Zbl 0559.14017
[2] F.Block and L.Göttsche, ‘Fock spaces and refined Severi degrees’, Int. Math. Res. Not.21 (2016) 6553-6580. · Zbl 1404.14011
[3] E.Brugallé and G.Mikhalkin, ‘Floor decompositions of tropical curves: the planar case’, Proceedings of 15th Gökova Geometry‐Topology Conference 2008 (Gökova, 2009) 64-90. · Zbl 1200.14106
[4] J.Bryan and R.Pandharipande, ‘Curves in Calabi-Yau threefolds and topological quantum field theory’, Duke Math. J.126 (2005) 369-396. · Zbl 1084.14053
[5] L.Caporaso and J.Harris, ‘Counting plane curves of any genus’, Invent. Math.131 (1998) 345-392. · Zbl 0934.14040
[6] W.Fulton and R.Pandharipande, ‘Notes on stable maps and quantum cohomology’, Proceedings of Algebraic Geometry - Santa Cruz (1995), Proceedings of Symposia in Pure Mathematics 62 (American Mathematical Society, Providence, RI) 45-96. · Zbl 0898.14018
[7] A.Gathman, ‘Topological recursion relations and Gromov-Witten invariants in higher genus’, Preprint, 2003, math.AG/0305361.
[8] T.Graber and R.Pandharipande, ‘Localization of virtual classes’, Invent. Math.135 (1999) 487-518. · Zbl 0953.14035
[9] T.Graber, J.Kock and R.Pandharipande, ‘Descendant invariants and characteristic numbers’, Amer. J. Math.124 (2002) 611-647. · Zbl 1055.14056
[10] J.Harris, ‘On the Severi problem’, Invent. Math.84 (1986) 445-461. · Zbl 0596.14017
[11] J.Harris and I.Morrison, The moduli space of curves (Springer, Berlin, 1998). · Zbl 0913.14005
[12] E.Ionel and T.Parker, ‘Relative Gromov-Witten invariants’, Ann. of Math.157 (2003) 45-96. · Zbl 1039.53101
[13] M.Kontsevich and Yu.Manin, ‘Gromov-Witten classes, quantum cohomology, and enumerative geometry’, Comm. Math. Phys.164 (1994) 525-562. · Zbl 0853.14020
[14] A.‐M.Li and Y.Ruan, ‘Symplectic surgery and Gromov-Witten invariants of Calabi-Yau 3‐folds I’, Invent. Math.145 (2001) 151-218. · Zbl 1062.53073
[15] J.Li, ‘A degeneration formula for Gromov-Witten invariants’, J. Differential Geom.60 (2002) 199-293. · Zbl 1063.14069
[16] J.Li and G.Tian, ‘Virtual moduli cycles and Gromov-Witten invariants of algebraic varieties’, J. Amer. Math. Soc.11 (1998) 119-174. · Zbl 0912.14004
[17] G.Mikhalkin, ‘Enumerative tropical algebraic geometry in \(\mathbb{R}^2\)’, J. Amer. Math. Soc.18 (2005) 313-377. · Zbl 1092.14068
[18] A.Okounkov, ‘Toda equations for Hurwitz numbers’, Math. Res. Lett.7 (2000) 447-453. · Zbl 0969.37033
[19] A.Okounkov and R.Pandharipande, ‘The equivariant Gromov-Witten theory of \(\mathbf{P}^1\)’, Ann. of Math.163 (2006) 561-605. · Zbl 1105.14077
[20] R.Pandharipande, ‘The Toda equation and the Gromov-Witten theory of the Riemann sphere’, Lett. Math. Phys.53 (2000) 59-74. · Zbl 0999.14020
[21] Z.Ran, ‘Enumerative geometry of singular plane curves’, Invent. Math.97 (1989) 447-465. · Zbl 0702.14040
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.