×

The \(\varkappa \) ring of the moduli of curves of compact type. (English) Zbl 1273.14057

Recall that the tautological ring \(R^*(\overline{M}_{g,n})\) is defined to be the minimal subalgebra of the Chow ring \(A^*(\overline{M}_{g,n})\) that is closed under push-forwards by boundary morphisms and forgetful morphisms \(\pi: \overline{M}_{g,n}\rightarrow \overline{M}_{g,n-1}\) [C. Faber and R. Pandharipande, J. Eur. Math. Soc. 7, 96–124 (2005; Zbl 1058.14046)]. Let \(M_{g,n}^{c}\) be the moduli space of “curves of compact type” (i.e. its dual graph having no loops). Hence \(M_{g,n} \subset M_{g,n}^{c} \subset \overline{M}_{g,n}\) and \(R^*(M^c_{g,n})\) can be defined from \(R^*(\overline{M}_{g,n})\) by restriction.
This self-contained paper gives a detailed study of the structures about the \(\kappa\) ring \(\kappa^*(M^c_{g,n})\subset R^*(M^c_{g,n})\) generated by the \(\kappa\) classes. The investigation is analogous to those of tautological rings conjectured by Faber in the 1990’s, which has been a central problem about the moduli space of curves. The author uses the new technique of stable quotients recently introduced in [A. Marian, D. Oprea and R. Pandharipande, Geom. Topol. 15, No. 3, 1651–1706 (2011; Zbl 1256.14057)]. This fundamental paper also raises many interesting questions about \(\kappa^*(M^c_{g,n})\).

MSC:

14H10 Families, moduli of curves (algebraic)

References:

[1] Arbarello, E. & Cornalba, M., Combinatorial and algebro-geometric cohomology classes on the moduli spaces of curves. J. Algebraic Geom., 5 (1996), 705–749. · Zbl 0886.14007
[2] Behrend, K. & Fantechi, B., The intrinsic normal cone. Invent. Math., 128 (1997), 45–88. · Zbl 0909.14006 · doi:10.1007/s002220050136
[3] Cox, D. A. & Katz, S., Mirror Symmetry and Algebraic Geometry. Mathematical Surveys and Monographs, 68. Amer. Math. Soc., Providence, RI, 1999.
[4] Faber, C., A conjectural description of the tautological ring of the moduli space of curves, in Moduli of Curves and Abelian Varieties, Aspects Math., E33, pp. 109–129. Vieweg, Braunschweig, 1999. · Zbl 0978.14029
[5] Faber, C. & Pandharipande, R., Hodge integrals and Gromov–Witten theory. Invent. Math., 139 (2000), 173–199. · Zbl 0960.14031 · doi:10.1007/s002229900028
[6] – Logarithmic series and Hodge integrals in the tautological ring. Michigan Math. J., 48 (2000), 215–252. · Zbl 1090.14005
[7] – Hodge integrals, partition matrices, and the {\(\lambda\)} g conjecture. Ann. of Math., 157 (2003), 97–124. · Zbl 1058.14046
[8] Fulton, W. & Pandharipande, R., Notes on stable maps and quantum cohomology, in Algebraic Geometry (Santa Cruz, 1995), Proc. Sympos. Pure Math., 62, pp. 45–96. Amer. Math. Soc., Providence, RI, 1997. · Zbl 0898.14018
[9] van der Geer, G., Cycles on the moduli space of abelian varieties, in Moduli of Curves and Abelian Varieties, Aspects Math., E33, pp. 65–89. Vieweg, Braunschweig, 1999. · Zbl 0974.14031
[10] Getzler, E., Intersection theory on $$ {{\(\backslash\)overline{\(\backslash\)mathcal{M}}}_{1,4 }} $$ and elliptic Gromov-Witten invariants. J. Amer. Math. Soc., 10 (1997), 973–998. · Zbl 0909.14002 · doi:10.1090/S0894-0347-97-00246-4
[11] Getzler, E. & Pandharipande, R., Virasoro constraints and the Chern classes of the Hodge bundle. Nuclear Phys. B, 530 (1998), 701–714. · Zbl 0957.14038 · doi:10.1016/S0550-3213(98)00517-3
[12] Graber, T. & Pandharipande, R., Localization of virtual classes. Invent. Math., 135 (1999), 487–518. · Zbl 0953.14035 · doi:10.1007/s002220050293
[13] – Constructions of nontautological classes on moduli spaces of curves. Michigan Math. J., 51 (2003), 93–109. · Zbl 1079.14511
[14] Graber, T. & Vakil, R., Relative virtual localization and vanishing of tautological classes on moduli spaces of curves. Duke Math. J., 130 (2005), 1–37. · Zbl 1088.14007 · doi:10.1215/S0012-7094-05-13011-3
[15] Hassett, B., Moduli spaces of weighted pointed stable curves. Adv. Math., 173 (2003), 316–352. · Zbl 1072.14014 · doi:10.1016/S0001-8708(02)00058-0
[16] Ionel, E.-N., Relations in the tautological ring of $$ {{\(\backslash\)mathcal{M}}_g} $$ . Duke Math. J., 129 (2005), 157–186. · Zbl 1086.14023 · doi:10.1215/S0012-7094-04-12916-1
[17] Kontsevich, M., Enumeration of rational curves via torus actions, in The Moduli Space of Curves (Texel Island, 1994), Progr. Math., 129, pp. 335–368. Birkhäuser, Boston, MA, 1995. · Zbl 0885.14028
[18] Losev, A. & Manin, Y., New moduli spaces of pointed curves and pencils of flat connections. Michigan Math. J., 48 (2000), 443–472. · Zbl 1078.14536 · doi:10.1307/mmj/1030132728
[19] Marian, A. & Oprea, D., Virtual intersections on the Quot scheme and Vafa-Intriligator formulas. Duke Math. J., 136 (2007), 81–113. · Zbl 1117.14055 · doi:10.1215/S0012-7094-07-13613-5
[20] Marian, A., Oprea, D. & Pandharipande, R., The moduli space of stable quotients. Geom. Topol., 15 (2011), 1651–1706. · Zbl 1256.14057 · doi:10.2140/gt.2011.15.1651
[21] Morita, S., Generators for the tautological algebra of the moduli space of curves. Topology, 42 (2003), 787–819. · Zbl 1054.32008 · doi:10.1016/S0040-9383(02)00082-4
[22] Mumford, D., Towards an enumerative geometry of the moduli space of curves, in Arithmetic and Geometry, Vol. II, Progr. Math., 36, pp. 271–328. Birkhäuser, Boston, MA, 1983. · Zbl 0554.14008
[23] Pandharipande, R., A geometric construction of Getzler’s elliptic relation. Math. Ann., 313 (1999), 715–729. · Zbl 0933.14035 · doi:10.1007/s002080050279
[24] – Three questions in Gromov–Witten theory, in Proceedings of the International Congress of Mathematicians (Beijing, 2002), Vol. II, pp. 503–512. Higher Ed. Press, Beijing, 2002. · Zbl 1047.14043
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.