×

Darcy-Forchheimer relation in magnetohydrodynamic Jeffrey nanofluid flow over stretching surface. (English) Zbl 1487.76089

Summary: Present article aims to investigate the heat and mass transfer developments in boundary layer Jeffery nanofluid flow via Darcy-Forchheimer relation over a stretching surface. A viscous Jeffery naonfluid saturates the porous medium under Darcy-Forchheimer relation. A variable magnetic effect normal to the flow direction is applied to reinforce the electro-magnetic conductivity of the nanofluid. However, small magnetic Reynolds is considered to dismiss the induced magnetic influence. The so-formulated set of governing equations is converted into set of nonlinear ODEs using transformations. Homotopy approach is implemented for convergent relations of velocity field, temperature distribution and the concentration of nanoparticles. Impact of assorted fluid parameters such as local inertial force, Porosity factor, Lewis and Prandtl factors, Brownian diffusion and Thermophoresis on the flow profiles is analyzed diagrammatically. The drag force (skin-friction) and heat-mass flux is especially analyzed through numerical information compiled in tabular form. It has been noticed that the inertial force and porosity factor result in decline of momentum boundary layer but, the scenario is opposite for thermal profile and solute boundary layer. The concentration of nanoparticles increases with increased porosity and inertial effect however, a significant reduction is detected in mass flux.

MSC:

76S05 Flows in porous media; filtration; seepage
76W05 Magnetohydrodynamics and electrohydrodynamics
76A05 Non-Newtonian fluids
76T20 Suspensions
76M99 Basic methods in fluid mechanics
80A19 Diffusive and convective heat and mass transfer, heat flow
Full Text: DOI

References:

[1] K. A. Abro and J. F. Gómez-Aguilar, A comparison of heat and mass transfer on a Walter’s-B fluid via Caputo-Fabrizio versus Atangana-Baleanu fractional derivatives using the Fox-H function, Eur. Phys. J. Plus, 134 (2019).
[2] K. A. Abro, I. Khan and J. F. Gómez-Aguilar, Thermal effects of magnetohydrodynamic micropolar fluid embedded in porous medium with Fourier sine transform technique, J. Braz. Soc. Mech. Sci. Engrg., 41 (2019).
[3] K. A. Abro; M. M. Baig; M. Hussain, Influences of magnetic field in viscoelastic fluid, Int. J. Nonlinear Anal. Appl., 9, 99-109 (2018) · Zbl 1415.76750 · doi:10.22075/ijnaa.2017.1451.1367
[4] K. A. Abro; I. Khan; K. S. Nisar; A. S. Alsagri, Effects of carbon nanotubes on magnetohydrodynamic flow of methanol based nanofluids via Atangana-Baleanu and Caputo-Fabrizio fractional derivatives, Thermal Science, 23, 883-898 (2019) · doi:10.2298/TSCI180116165A
[5] K. A. Abro; I. A. Abro; S. M. Almani; I. Khan, On the thermal analysis of magnetohydrodynamic Jeffery fluid via modern non integer order derivative, J. King Saud Univ. Science, 31, 973-979 (2019) · doi:10.1016/j.jksus.2018.07.012
[6] K. A. Abro; A. D. Chandio; I. A. Abro; I. Khan, Dual thermal analysis of magnetohydrodynamic flow of nanofluids via modern approaches of Caputo-Fabrizio and Atangana-Baleanu fractional derivatives embedded in porous medium, J. Thermal Anal. Calorimetry, 135, 2197-2207 (2019) · doi:10.1007/s10973-018-7302-z
[7] K. A. Abro, M. Hussain and M. M. Baig, An analytic study of molybdenum disulfide nanofluids using the modern approach of Atangana-Baleanu fractional derivatives, Eur. Phys. J. Plus, 132 (2017).
[8] K. A. Abro, I. Khan and A. Tassaddiq, Application of Atangana-Baleanu fractional derivative to convection flow of MHD Maxwell fluid in a porous medium over a vertical plate, Math. Model. Nat. Phenom., 13 (2018), 12pp. · Zbl 1405.76065
[9] M. I. Afridi, I. Tlili, M. Goodarzi, M. Osman and N. A. Khan, Irreversibility analysis of hybrid nanofluid flow over a thin needle with effects of energy dissipation, Symmetry, 11 (2019). · Zbl 1425.82015
[10] A. Alsaedi; Z. Iqbal; M. Mustafa; T. Hayat, Exact solutions for the magnetohydrodynamic flow of a Jeffrey fluid with convective boundary conditions and chemical reaction, Z Naturforsch A., 67, 517-524 (2012) · doi:10.5560/zna.2012-0054
[11] E. H. Aly and A. Ebaid, New analytical and numerical solutions for mixed convection boundary-layer nanofluid flow along an inclined plate embedded in a porous medium, J. Appl. Math., 2013 (2013), 7pp. · Zbl 1397.76130
[12] J. Buongiorno, Convective transport in nanofluids, J. Heat Transfer, 128, 240-250 (2006) · doi:10.1115/1.2150834
[13] J. Cheng; S. Liao; I. Pop, Analytical series solution for unsteady mixed convection boundary layer flow near the stagnation point on a vertical surface in a porous medium, Transp. Porous Media, 61, 365-379 (2005) · doi:10.1007/s11242-005-0546-7
[14] S. U. S. Choi and J. A. Eastman, Enhancing thermal conductivity of fluids with nanoparticles, ASME International Mechanical Engineering Congress & Exposition, American Society of Mechanical Engineers, San Francisco, CA, 1995.
[15] R. Cortell, Viscous flow and heat transfer over a nonlinearly stretching sheet, Appl. Math. Comput., 184, 864-873 (2007) · Zbl 1112.76022 · doi:10.1016/j.amc.2006.06.077
[16] A. S. Dogonchi; F. Selimefendigil; D. D. Ganji, Magneto-hydrodynamic natural convection of CuO-water nanofluid in complex shaped enclosure considering various nanoparticle shapes, Int. J. Numer. Methods Heat Fluid Flow, 29, 1663-1679 (2019) · doi:10.1108/HFF-06-2018-0294
[17] A. S. Dogonchi; M. A. Sheremet; D. D. Ganji; I. Pop, Free convection of copper-water nanofluid in a porous gap between hot rectangular cylinder and cold circular cylinder under the effect of inclined magnetic field, J. Thermal Anal. Calorimetry, 135, 1171-1184 (2019) · doi:10.1007/s10973-018-7396-3
[18] J. A. Gbadeyan; A. S. Idowu; A. W. Ogunsola; O. O. Agboola; P. O. Olanrewaju, Heat and mass transfer for Soret and Dufour’s effect on mixed convection boundary layer flow over a stretching vertical surface in a porous medium filled with a viscoelastic fluid in the presence of magnetic field, Glob. J. Sci. Front. Res., 11, 2249-4626 (2011)
[19] M. Goodarzi, I. Tlili, Z. Tian and M. Safaei, Efficiency assessment of using graphene nanoplatelets-silver/water nanofluids in microchannel heat sinks with different cross-sections for electronics cooling, Int. J. Numer. Methods Heat Fluid Flow, 30 (2019).
[20] T. Hayat; Q. Hussain; T. Javed, The modified decomposition method and Padé approximants for the MHD flow over a non-linear stretching sheet, Nonlinear Anal. Real World Appl., 10, 966-973 (2009) · Zbl 1167.76385 · doi:10.1016/j.nonrwa.2007.11.020
[21] T. Hayat; A. Aziz; T. Muhammad; B. Ahmad, On magnetohydrodynamic flow of second grade nanofluid over a nonlinear stretching sheet, J. Magnetism Magnetic Materials, 408, 99-106 (2016) · doi:10.1016/j.jmmm.2016.02.017
[22] T. Hayat; T. Muhammad; S. A. Shehzad; A. Alsaedi, A mathematical study for three-dimensional boundary layer flow of Jeffrey nanofluid, Z. Naturforsch. A., 70, 225-233 (2015) · Zbl 1322.76005
[23] T. Hayat, S. Qayyum, M. Imtiaz and A. Alsaedi, Impact of Cattaneo-Christov heat flux in Jeffrey fluid flow with homogeneous-heterogeneous reactions, PLoS ONE, 11 (2016). · Zbl 1396.76018
[24] T. Hayat, T. Abbas, M. Ayub, T. Muhammad and A. Alsaedi, On squeezed flow of Jeffrey nanofluid between two parallel disks, Appl. Sciences, 6 (2016).
[25] W. Ibrahim; O. D. Makinde, The effect of double stratification on boundary-layer flow and heat transfer of nanofluid over a vertical plate, Comput. & Fluids, 86, 433-441 (2013) · Zbl 1290.76028 · doi:10.1016/j.compfluid.2013.07.029
[26] S. M. Imran, S. Asghar and M. Mushtaq, Mixed convection flow over an unsteady stretching surface in a porous medium with heat source, Math. Prob. Eng., 2012 (2012), 15pp. · Zbl 1264.76096
[27] N. S. Khan; T. Gul; S. Islam; A. Khan; Z. Shah, Brownian motion and Thermophoresis effects on MHD mixed convective thin film second-grade nanofluid flow with hall effect and heat transfer past a stretching sheet, J. Nanofluids, 6, 812-829 (2017) · doi:10.1166/jon.2017.1383
[28] N. S. Khan; T. Gul; M. A. Khan; E. Bonyah; S. Islam, Mixed convection in gravity-driven thin film non-Newtonian nanofluids flow with gyrotactic microorganisms, Results Physics, 7, 4033-4049 (2017) · doi:10.1016/j.rinp.2017.10.017
[29] W. A. Khan; I. Pop, Boundary-layer flow of a nanofluid past a stretching sheet, Int. J. Heat Mass Transfer, 53, 2477-2483 (2010) · Zbl 1190.80017 · doi:10.1016/j.ijheatmasstransfer.2010.01.032
[30] K. U. Rehman; M. Awais; A. Hussain; N. Kousar; M. Y. Malik, Mathematical analysis on MHD Prandtl-Eyring nanofluid new mass flux conditions, Math. Methods Appl. Sci., 42, 24-38 (2019) · Zbl 1407.76034 · doi:10.1002/mma.5319
[31] K. U. Rehman, I. Shahzadi, M. Y. Malik, Q. M. Al-Mdallal and M. Zahri, On heat transfer in the presence of nano-sized particles suspended in a magnetized rotatory flow field, Case Studies Thermal Engrg., 14 (2019).
[32] M. Kothandapani; S. Srinivas, Peristaltic transport of a Jeffrey fluid under the effect of magnetic field in an asymmetric channel, Int. J. Non-Linear Mech., 43, 915-924 (2008) · doi:10.1016/j.ijnonlinmec.2008.06.009
[33] L. A. Lund, Z. Omar, I. Khan, J. Raza, M. Bakouri and I. Tlili, Stability analysis of Darcy-Forchheimer flow of casson type nanofluid over an exponential sheet: Investigation of critical points, Symmetry, 11 (2019).
[34] L. A. Lund; Z. Omar; I. Khan; S. Dero, Multiple solutions of \(Cu-C_6 H_9 NaO_7\) and \(Ag-C_6 H_9 NaO_7\) nanofluids flow over nonlinear shrinking surface, J. Cent. South Univ., 26, 1283-1293 (2019) · doi:10.1007/s11771-019-4087-6
[35] M. Mustafa; J. A. Khan; T. Hayat; A. Alsaedi, Analytical and numerical solutions for axisymmetric flow of nanofluid due to non-linearly stretching sheet, Int. J. Non-Linear Mech., 71, 22-29 (2015) · doi:10.1016/j.ijnonlinmec.2015.01.005
[36] F. Mabood; W. A. Khan; A. I. M. Ismail, MHD boundary layer flow and heat transfer of nanofluids over a nonlinear stretching sheet: A numerical study, J. Magnetism Magnetic Materials, 374, 569-576 (2015) · doi:10.1016/j.jmmm.2014.09.013
[37] G. Rasool, T. Zhang and A. Shafiq, Second grade nanofluidic flow past a convectively heated vertical Riga plate, Physica Scripta, 94 (2019).
[38] G. Rasool and T. Zhang, Characteristics of chemical reaction and convective boundary conditions in Powell-Eyring nanofluid flow along a radiative Riga plate, Heliyon, 5 (2019).
[39] G. Rasool, A. Shafiq, C. M. Khalique and T. Zhang, Magnetohydrodynamic Darcy Forchheimer nanofluid flow over a nonlinear stretching sheet, Physica Scripta, 94 (2019).
[40] G. Rasool; T. Zhang; A. Shafiq; H. Durur, Influence of chemical reaction on Marangoni convective flow of nanoliquid in the presence of Lorentz forces and thermal radiation: A numerical investigation, J. Adv. Nanotechnology, 1, 32-39 (2019) · doi:10.14302/issn.2689-2855.jan-19-2598
[41] G. Rasool; T. Zhang; A. Shafiq, Marangoni effect in second grade forced convective flow of water based nanofluid, J. Adv. Nanotechnology, 1, 50-61 (2019) · doi:10.14302/issn.2689-2855.jan-19-2716
[42] G. Rasool and T. Zhang, Darcy-Forchheimer nanofluidic flow manifested with Cattaneo-Christov theory of heat and mass flux over non-linearly stretching surface, PLoS ONE, 14 (2019).
[43] P. V. Satya Narayana, Effects of variable permeability and radiation absorption on magnetohydrodynamic (MHD) mixed convection flow in a vertical wavy channel with travelling thermal waves, Propuls. Power Res., 4, 150-160 (2015) · doi:10.1016/j.jppr.2015.07.002
[44] I. Tlili; W. A. Khan; K. Ramadan, MHD flow of nanofluid flow across horizontal circular cylinder: Steady forced convection, J. Nanofluids, 8, 179-186 (2019) · doi:10.1166/jon.2019.1574
[45] I. Tlili; W. A. Khan; K. Ramadan, Entropy generation due to MHD stagnation point flow of a nanofluid on a stretching surface in the presence of radiation, J. Nanofluids, 7, 879-890 (2018) · doi:10.1166/jon.2018.1513
[46] M. Turkyilmazoglu; I. Pop, Heat and mass transfer of unsteady natural convection flow of some nanofluids past a vertical infinite flat plate with radiation effect, Int. J. Heat Mass Transfer, 59, 167-171 (2013) · doi:10.1016/j.ijheatmasstransfer.2012.12.009
[47] M. Turkyilmazoglu; I. Pop, Exact analytical solutions for the flow and heat transfer near the stagnation point on a stretching/shrinking sheet in a Jeffrey fluid, Int. J. Heat Mass Transfer, 57, 82-88 (2013) · doi:10.1016/j.ijheatmasstransfer.2012.10.006
[48] S. Zuhra; N. S. Khan; S. Islam, Magnetohydrodynamic second-grade nanofluid flow containing nanoparticles and gyrotactic microorganisms, Comput. Appl. Math., 37, 6332-6358 (2018) · doi:10.1007/s40314-018-0683-6
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.