×

Application of constant proportional Caputo fractional derivative to thermodiffusion flow of MHD radiative Maxwell fluid under slip effect over a moving flat surface with heat and mass diffusion. (English) Zbl 07901652


MSC:

80-XX Classical thermodynamics, heat transfer
76-XX Fluid mechanics

References:

[1] Chamkha, A. J.; Ben-Nakhi, A., MHD mixed convection-radiation interaction along a permeable surface immersed in a porous medium in the presence of Soret and Dufour’s Effects, Heat and Mass Transfer, 44, 845-856 (2008) · doi:10.1007/s00231-007-0296-x
[2] Makinde, O. D., On MHD mixed convection with Soret and Dufour effects past a vertical plate embedded in a porous medium, Latin American Applied Research, 41, 63-68 (2011)
[3] Vieru, D.; Imran, M. A.; Rauf, A., Slip effect on free convection flow of second grade fluids with ramped wall temperature, Heat Transfer Research, 46, 8, 713-724 (2015) · doi:10.1615/HeatTransRes.2015007464
[4] Tahir, M.; Imran, M. A.; Raza, N.; Abdullah, M.; Aleem, M., Wall slip and non-integer order derivative effects on the heat transfer flow of Maxwell fluid over an oscillating vertical plate with new definition of fractional Caputo-Fabrizio derivatives, Results in Physics, 7, 3, 1887-1898 (2017) · doi:10.1016/j.rinp.2017.06.001
[5] Jamil, M.; Khan, N. A., Slip effects on fractional viscoelastic fluids, International Journal of Differential Equations, 2011 (2011) · Zbl 1402.76017 · doi:10.1155/2011/193813
[6] Hayat, T.; Afzaal, M. F.; Fetecau, C.; Hendi, A. A., Slip effects on the oscillatory flow in a porous medium, Journal of Porous Media, 14, 6, 481-493 (2011) · doi:10.1615/JPorMedia.v14.i6.20
[7] Imran, M. A.; Shah, N. A.; Rafique, K.; Sohail, A.; Ejaz, S., General solutions of convective flows of MHD Casson fluid with slip and Radiative heat transfer at the boundary, Computational Thermal Sciences, 9, 1, 1-11 (2011)
[8] Sajid, M.; Abbas, Z.; Ali, N.; Javaid, T.; Ahmad, I., Slip flow of a Maxwell fluid past a stretching sheet, Walailak Journal of Science and Technology, 11, 12, 1093-1103 (2014)
[9] Hayat, T.; Sajjad, R.; Abbas, Z.; Sajid, M.; Hendi, A. A., Radiation effects on MHD flow of Maxwell fluid in a channel with porous medium, International Journal of Heat and Mass Transfer, 54, 4, 854-862 (2011) · Zbl 1209.80008 · doi:10.1016/j.ijheatmasstransfer.2010.09.069
[10] Ramesh, G. K.; Gireesha, B. J.; Hayat, T.; Alsaedi, A., MHD flow of Maxwell fluid over a stretching sheet in the presence of nanoparticles, thermal radiation and chemical reaction: a numerical study, Journal of Nanofluids, 4, 1, 100-107 (2015) · doi:10.1166/jon.2015.1133
[11] Khan, I.; Shah, N. A.; Dennis, L. C. C., A scientific report on heat transfer analysis in mixed convection flow of Maxwell fluid over an oscillating vertical plate, Scientific Report, 8 (2018) · doi:10.1038/srep46975
[12] Chen, S.; Zheng, L.; Shen, B.; Chen, X., Time-space dependent fractional boundary layer flow of Maxwell fluid over an unsteady stretching surface, Theoretical and Applied Mechanics Letters, 5, 6, 262-266 (2015) · doi:10.1016/j.taml.2015.11.005
[13] Imran, M. A.; Sarwar, S.; Imran, M.; Aleem, M., Combined effect of slip and radiation on MHD flow past a constantly moving vertical plate with variable temperature, Journal of Prime Research in Mathematics, 12, 130-144 (2016) · Zbl 1448.76190
[14] Opanuga, A. A.; Okagbue, H. I.; Agboola, O. O.; Bishop, S. A., Second law analysis of ion slip effect on MHD couple stress fluid, International Journal of Mechanics, 12, 96-101 (2018)
[15] Hayat, T.; Asghar, Z., Heat transfer analysis on the peristaltic motion with slip effects, Zeitschrift für Naturforschung A, 65, 8-9, 697-704 (2010) · doi:10.1515/zna-2010-8-911
[16] Hayat, T.; Hina, S.; Hendi, A. A., Slip effects on peristaltic transport of a Maxwell fluid with heat and mass transfer, Journal of Mechanics in Medicine and Biology, 12, 1 (2012) · doi:10.1142/S0219519412004375
[17] Hayat, T.; Imtiaz, M.; Alsaedi, A., Partial slip effects in flow over nonlinear stretching surface, Applied Mathematics and Mechanics, 36, 1513-1526 (2015) · Zbl 1331.76128 · doi:10.1007/s10483-015-1999-7
[18] Shakeel, A.; Ahmad, S.; Khan, H.; Shah, N. A.; Haq, S., Flows with slip of Oldroyd-B fluids over a moving plate, Advances in Mathematical Physics, 2016 (2016) · Zbl 1388.76017 · doi:10.1155/2016/8619634
[19] Shah, N. A.; Fetecau, C.; Vieru, D., First general solutions for unsteady unidirectional motions of rate type fluids in cylindrical domains, Alexandria Engineering Journal, 57, 3, 1185-1196 (2018) · doi:10.1016/j.aej.2017.03.014
[20] Shah, R. A.; Abbas, T.; Idrees, M.; Ullah, M., MHD Carreau fluid slip flow over a porous stretching sheet with viscous dissipation and variable thermal conductivity, Boundary Value Problems, 2017 (2017) · Zbl 1372.35248 · doi:10.1186/s13661-017-0827-4
[21] Freidoonimehr, N.; Jafari, S. S., Second law of thermodynamics analysis of hydro-magnetic nano-fluid slip flow over a stretching permeable surface, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 37, 1245-1256 (2015) · doi:10.1007/s40430-014-0250-z
[22] Schneider, S., Wall slip effects measuring the rheological behavior of electrorheological (ER) suspensions, International Journal of Modern Physics B, 26, 1 (2012) · doi:10.1142/S0217979211102150
[23] Raza, J., Thermal radiation and slip effects on magnetohydrodynamic (MHD) stagnation point flow of Casson fluid over a convective stretching sheet, Propulsion and Power Research, 8, 2, 138-146 (2019) · doi:10.1016/j.jppr.2019.01.004
[24] Norouzi, M.; Davoodi, M.; Anwar Bég, O.; Shamshuddin, M. D., Theoretical study of Oldroyd-B visco-elastic fluid flow through curved pipes with slip effects in polymer flow processing, International Journal of Applied and Computational Mathematics, 4 (2018) · Zbl 1442.76015 · doi:10.1007/s40819-018-0541-7
[25] Fetecau, C.; Vieru, D.; Fetecau, C.; Pop, I., Slip effects on the unsteady radiative MHD free convection flow over a moving plate with mass diffusion and heat source, The European Physical Journal Plus, 130 (2015) · doi:10.1140/epjp/i2015-15006-8
[26] Khan, S. A.; Nie, Y.; Ali, B., Multiple slip effects on MHD unsteady viscoelastic nano-fluid flow over a permeable stretching sheet with radiation using the finite element method, SN Applied Sciences, 2 (2020) · doi:10.1007/s42452-019-1831-3
[27] Khan, I.; Shah, N. A.; Mahsud, Y.; Vieru, D., Heat transfer analysis in a Maxwell fluid over an oscillating vertical plate using fractional Caputo-Fabrizio derivatives, The European Physical Journal Plus, 132 (2017) · doi:10.1140/epjp/i2017-11456-2
[28] Chu, Y.-M.; Ijaz Khan, M.; Abbas, T.; Sidi, M. O.; Alharbi, K. A. M.; Alqsair, U. F.; Khan, S. U.; Riaz Khan, M.; Malik, M. Y., Radiative thermal analysis for four types of hybrid nanoparticles subject to non-uniform heat source: keller box numerical approach, Case Studies in Thermal Engineering, 40 (2022) · doi:10.1016/j.csite.2022.102474
[29] Alqahtani, A. M.; Riaz Khan, M.; Akkurt, N.; Puneeth, V.; Alhowaity, A.; Hamam, H., Thermal analysis of a radiative nanofluid over a stretching/shrinking cylinder with viscous dissipation, Chemical Physics Letters, 808 (2022) · doi:10.1016/j.cplett.2022.140133
[30] Puneeth, V.; Ali, F.; Khan, M. R.; Anwar, M. S.; Ahammad, N. A., Theoretical analysis of the thermal characteristics of Ree-Eyring nanofluid flowing past a stretching sheet due to bioconvection, Biomass Conversion and Biorefinery (2022) · doi:10.1007/s13399-022-02985-1
[31] Alharbi, K. A. M.; Khan, M. R.; Ould Sidi, M.; Algelany, A. M.; Elattar, S.; Ahammad, N. A., Investigation of hydromagnetic bioconvection flow of Oldroyd-B nanofluid past a porous stretching surface, Biomass Conversion and Biorefinery, 13, 4331-4342 (2023) · doi:10.1007/s13399-022-02785-7
[32] Khan, M. R.; Algarni, S.; Alqahtani, T.; Alsallami, S. A. M.; Saeed, T.; Galal, A. M., Numerical analysis of a time-dependent aligned MHD boundary layer flow of a hybrid nanofluid over a porous radiated stretching/shrinking surface, Waves in Random and Complex Media (2022) · doi:10.1080/17455030.2022.2067367
[33] Qaiser, D.; Zheng, Z.; Riaz Khan, M.; Galal, A. M., Significance of activation energy and entropy optimization in radiative stagnation point flow of nanofluid with cross-diffusion and viscous dissipation, Waves in Random and Complex Media (2022) · doi:10.1080/17455030.2022.2148179
[34] Puneeth, V.; Shoaib Anwar, M.; Riaz Khan, M., Bioconvective Darcy-Frochherimer flow of the Ree-Eyring nanofluid through a stretching sheet with velocity and thermal slips, Waves in Random and Complex Media, 1-14 (2022) · doi:10.1080/17455030.2022.2157507
[35] Khan, M. R.; Alqahtani, A. M.; Alhazmi, S. E.; Elkotb, M. A.; Sidi, M. O.; Alrihieli, H. F.; Tag-Eldin, E.; Yassen, M. F., Numerical investigation of Darcy-Forchheimer hybrid nanofluid flow with energy transfer over a spinning fluctuating disk under the influence of chemical reaction and heat source, Micromachines, 14, 1 (2023) · doi:10.3390/mi14010048
[36] Kolsi, L.; Raza, A.; Al-Khaled, K.; Ghachem, K.; Khan, S. U.; Haq, A. U., Thermal applications of copper oxide, silver, and titanium dioxide nanoparticles via fractional derivative approach, Waves in Random and Complex Media, 33, 3, 794-807 (2023) · doi:10.1080/17455030.2022.2038816
[37] Jie, Z.; Ijaz Khan, M.; Al-Khaled, K.; El-Zahar, E. R.; Acharya, N.; Raza, A.; Khan, S. U.; Xia, W.-F.; Tao, N.-X., Thermal transport model for Brinkman type nanofluid containing carbon nanotubes with sinusoidal oscillations conditions: a fractional derivative concept, Waves in Random and Complex Media (2022) · doi:10.1080/17455030.2022.2049926
[38] Raza, A.; Ullah Khan, S.; Al-Khaled, K.; Ijaz Khan, M.; Ul Haq, A.; Alotaibi, F.; Mousa, A. A. A.; Qayyum, S., A fractional model for the kerosene oil and water-based Casson nanofluid with inclined magnetic force, Chemical Physics Letters, 787 (2022) · doi:10.1016/j.cplett.2021.139277
[39] Raza, A.; Ghaffari, A.; Khan, S. U.; Haq, A. U.; Khan, M. I.; Khan, M. R., Non-singular fractional computations for the radiative heat and mass transfer phenomenon subject to mixed convection and slip boundary effects, Chaos, Solitons & Fractals, 155 (2022) · Zbl 1498.35436 · doi:10.1016/j.chaos.2021.111708
[40] Khan, S. U.; Shehzad, S. A.; Ali, N.; Bashir, M. N., Some generalized results for Maxwell fluid flow over porous oscillatory surface with modified Fourier and Fick’s theories, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 40 (2018) · doi:10.1007/s40430-018-1393-0
[41] Khan, S. U.; Ali, N.; Sajid, M.; Hayat, T., Heat transfer characteristics in oscillatory hydromagnetic channel flow of Maxwell fluid using Cattaneo-Christov model, Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 89, 377-385 (2019) · doi:10.1007/s40010-017-0470-6
[42] Tang, R.; Rehman, S.; Farooq, A.; Kamran, M.; Qureshi, M. I.; Fahad, A.; Liu, J.-B., Comparative study of natural convection flow of fractional Maxwell fluid with uniform heat flux and radiation, Complexity, 2021 (2021) · doi:10.1155/2021/9401655
[43] Mansoor, M.; Nawaz, Y.; Ahmad, B.; Irfan, M., Chemically reactive flow and energy transport phenomenon considering variable conductivity on Maxwell fluid: a numerical simulation, Mathematical Problems in Engineering, 2022 (2022) · doi:10.1155/2022/8461613
[44] Imran, M. A.; Aleem, M.; Riaz, M. B.; Ali, R.; Khan, I., A comprehensive report on the convective flow of fractional (ABC) and (CF) MHD viscous fluid subject to generalized boundary conditions, Chaos, Solitons & Fractals, 118, 274-289 (2019) · Zbl 1442.76144 · doi:10.1016/j.chaos.2018.12.001
[45] Baleanu, D.; Fernandez, A., On fractional operators and their classifications, Mathematics, 7, 9 (2019) · doi:10.3390/math7090830
[46] Jarad, F.; Abdeljawad, T.; Rashid, S.; Hammouch, Z., More properties of the proportional fractional integrals and derivatives of a function with respect to another function, Advances in Difference Equations, 2020 (2020) · Zbl 1485.26005 · doi:10.1186/s13662-020-02767-x
[47] Ahmad, M.; Imran, M. A.; Aleem, M.; Khan, I., A comparative study and analysis of natural convection flow of MHD non-Newtonian fluid in the presence of heat source and first-order chemical reaction, Journal of Thermal Analysis and Calorimetry, 137, 1783-1796 (2019) · doi:10.1007/s10973-019-08065-3
[48] Baleanu, D.; Fernandez, A.; Akgül, A., On a fractional operator combining proportional and classical differ integrals, Mathematics, 8, 3 (2020) · doi:10.3390/math8030360
[49] Howell, J. R.; Siegel, R., Thermal Radiation Heat Transfer (2011), New York: Taylor & Francis, New York
[50] Magyari, E.; Pantokratoras, A., Note on the effect of thermal radiation in the linearized Rosseland approximation on the heat transfer characteristics of various boundary layer flows, International Communications in Heat and Mass Transfer, 38, 5, 554-556 (2011) · doi:10.1016/j.icheatmasstransfer.2011.03.006
[51] Fetecau, C.; Vieru, D.; Fetecau, C.; Akhter, S., General solutions for magnetohydrodynamic natural convection flow with radiative heat transfer and slip condition over a moving plat, Zeitschrift für Naturforschung A, 68, 10-11, 659-667 (2013) · doi:10.5560/zna.2013-0041
[52] Narahari, M.; Dutta, B. K., Effects of thermal radiation and mass diffusion on free convection flow near a vertical plate with Newtonian heating, Chemical Engineering Communications, 199, 5, 628-643 (2012) · doi:10.1080/00986445.2011.611058
[53] Stehfest, H., Algorithm 368: numerical inversion of Laplace transforms [D5], Communications of the ACM, 13, 1, 47-49 (1970) · doi:10.1145/361953.361969
[54] Tzou, D. Y., Macro to Microscale Heat Transfer: The Behavior (1970), Washington: Tylor and Francis, Washington
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.