×

GMRES algorithms over 35 years. (English) Zbl 1511.65002

Summary: This paper is about GMRES algorithms for the solution of nonsingular linear systems. We first consider basic algorithms and study their convergence. We then focus on acceleration strategies and parallel algorithms that are useful for solving challenging systems. We also briefly discuss other problems, such as systems with multiple right-hand sides, shifted systems, and singular systems.

MSC:

65-03 History of numerical analysis
65F10 Iterative numerical methods for linear systems
65Y05 Parallel numerical computation

References:

[1] Saad, Y.; Schultz, M. H., GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 7, 3, 856-869 (1986) · Zbl 0599.65018
[2] Liesen, J.; Strakoš, Z., Krylov subspace methods: Principles and analysis (2013), Oxford University Press: Oxford University Press Oxford · Zbl 1263.65034
[3] Eiermann, M.; Ernst, O. G.; Schneider, O., Analysis of acceleration strategies for restarted minimal residual methods, J. Comput. Appl. Math., 123, 1, 261-292 (2000) · Zbl 0968.65016
[4] Saad, Y., Further analysis of minimum residual iterations, Numer. Linear Algebra Appl., 7, 2, 67-93 (2000) · Zbl 0983.65035
[5] Eiermann, M.; Ernst, O. G., Geometric aspects of the theory of Krylov subspace methods, Acta Numer., 10, 251-312 (2001) · Zbl 1105.65328
[6] Joubert, W. D.; Manteuffel, T. A., Iterative methods for nonsymmetric linear systems, Iterative Methods for Large Linear Systems, 149-171 (1990), Academic Press: Academic Press Austin, TX, USA
[7] Freund, R. W.; Golub, G. H.; Nachtigal, N. M., Iterative solution of linear systems, Acta Numer., 1, 57-100 (1992) · Zbl 0762.65019
[8] Greenbaum, A., Iterative methods for solving linear systems (1997), SIAM: SIAM Philadelphia, PA · Zbl 0883.65022
[9] Saad, Y., Iterative methods for sparse linear systems (2003), SIAM: SIAM Philadelphia, PA · Zbl 1002.65042
[10] van der Vorst, H. A., Iterative Krylov methods for large linear systems (2003), Cambridge University Press: Cambridge University Press Cambridge · Zbl 1023.65027
[11] Simoncini, V.; Szyld, D. B., Recent computational developments in Krylov subspace methods for linear systems, Numer. Linear Algebra Appl., 14, 1, 1-59 (2007) · Zbl 1199.65112
[12] Meurant, G.; Duintjer Tebbens, J., Krylov methods for nonsymmetric linear systems: From theory to computations (2020), Springer: Springer Cham · Zbl 1454.65002
[13] Ghai, A.; Lu, C.; Jiao, X., A comparison of preconditioned Krylov subspace methods for large-scale nonsymmetric linear systems, Numer. Linear Algebra Appl., 26, 1, e2215 (2019) · Zbl 1524.65131
[14] Saad, Y., Iterative methods for linear systems of equations: a brief historical journey, Contemp. Math., 754, 197-215 (2020) · Zbl 1477.65063
[15] Carson, E. C.; Strakoš, Z., On the cost of iterative computations, Philos. Trans. R. Soc. A, 378, 2166, 20190050 (2020) · Zbl 1462.65034
[16] Benzi, M., Preconditioning techniques for large linear systems: a survey, J. Comput. Phys., 182, 2, 418-477 (2002) · Zbl 1015.65018
[17] Wathen, A. J., Preconditioning, Acta Numer., 24, 329-376 (2015) · Zbl 1316.65039
[18] Nigro, N.; Storti, M.; Idelsohn, S.; Tezduyar, T., Physics based GMRES preconditioner for compressible and incompressible navier-stokes equations, Comput. Meth. Appl. Mech. Eng., 154, 3, 203-228 (1998) · Zbl 0957.76032
[19] Gander, M. J.; Graham, I. G.; Spence, E. A., Applying GMRES to the Helmholtz equation with shifted Laplacian preconditioning: what is the largest shift for which wavenumber-independent convergence is guaranteed?, Numer. Math., 131, 3, 567-614 (2015) · Zbl 1328.65238
[20] Pearson, J. W.; Pestana, J., Preconditioners for Krylov subspace methods: an overview, GAMM-Mitteilungen, 43, 4, e202000015 (2020) · Zbl 1541.65016
[21] Arnoldi, W. E., The principle of minimized iterations in the solution of the matrix eigenvalue problem, Q. Appl. Math., 9, 1, 17-29 (1951) · Zbl 0042.12801
[22] Daniel, J. W.; Gragg, W. B.; Kaufman, L.; Stewart, G. W., Reorthogonalization and stable algorithms for updating the Gram-Schmidt QR factorization, Math. Comput., 30, 136, 772-795 (1976) · Zbl 0345.65021
[23] Hernández, V.; Román, J. E.; Tomás, A., Parallel Arnoldi eigensolvers with enhanced scalability via global communications rearrangement, Parallel Comput., 33, 7, 521-540 (2007)
[24] Hoemmen, M., Communication-Avoiding Krylov Subspace Methods (2010), UC Berkeley, Ph.D. thesis
[25] Swirydowicz, K.; Langou, J.; Ananthan, S.; Yang, U.; Thomas, S., Low synchronization Gram-Schmidt and generalized minimal residual algorithms, Numer. Linear Algebra Appl., 28, 2, e2343 (2021) · Zbl 1474.65103
[26] Saad, Y., Numerical methods for large eigenvalue problems (2011), SIAM: SIAM Philadelphia, PA · Zbl 1242.65068
[27] Lindquist, N.; Luszczek, P.; Dongarra, J., Improving the performance of the GMRES method using mixed-precision techniques, The Smoky Mountains Computational Sciences and Engineering Conference, 51-66 (2020), Springer: Springer Oak Ridge, TN, USA
[28] Leon, S. J.; Björck, r.; Gander, W., Gram-Schmidt orthogonalization: 100 years and more, Numer. Linear Algebra Appl., 20, 3, 492-532 (2013) · Zbl 1313.65086
[29] Saad, Y., Variations on Arnoldi’s method for computing eigenelements of large unsymmetric matrices, Linear Algebra Appl., 34, 269-295 (1980) · Zbl 0456.65017
[30] Bindel, D.; Demmel, J. W.; Kahan, W.; Marques, O., On computing Givens rotations reliably and efficiently, ACM Trans. Math. Softw., 28, 2, 206-238 (2002) · Zbl 1072.65048
[31] Paige, C. C.; Rozlozník, M.; Strakoš, Z., Modified Gram-Schmidt (MGS), least squares, and backward stability of MGS-GMRES, SIAM J. Matrix Anal. Appl., 28, 1, 264-284 (2006) · Zbl 1113.65028
[32] Saad, Y., Krylov subspace methods for solving large unsymmetric linear systems, Math. Comput., 37, 155, 105-126 (1981) · Zbl 0474.65019
[33] Brown, P. N., A theoretical comparison of the Arnoldi and GMRES algorithms, SIAM J. Sci. Stat. Comput., 12, 1, 58-78 (1991) · Zbl 0719.65022
[34] Cullum, J. K.; Greenbaum, A., Relations between Galerkin and norm-minimizing iterative methods for solving linear systems, SIAM J. Matrix Anal. Appl., 17, 2, 223-247 (1996) · Zbl 0855.65021
[35] Sadok, H., CMRH: A new method for solving nonsymmetric linear systems based on the Hessenberg reduction algorithm, Numer. Algorithms, 20, 4, 303-321 (1999) · Zbl 0936.65031
[36] Sadok, H.; Szyld, D. B., A new look at CMRH and its relation to GMRES, BIT, 52, 2, 485-501 (2012) · Zbl 1247.65045
[37] Hochbruck, M.; Lubich, C., Error analysis of Krylov methods in a nutshell, SIAM J. Sci. Comput., 19, 2, 695-701 (1998) · Zbl 0914.65024
[38] Saad, Y.; Wu, K., DQGMRES: A direct quasi-minimal residual algorithm based on incomplete orthogonalization, Numer. Linear Algebra Appl., 3, 4, 329-343 (1996) · Zbl 0906.65033
[39] Frayssé, V.; Giraud, L.; Gratton, S.; Langou, J., Algorithm 842: a set of GMRES routines for real and complex arithmetics on high performance computers, ACM Trans. Math. Softw., 31, 2, 228-238 (2005) · Zbl 1070.65527
[40] Faber, V.; Joubert, W. D.; Knill, E.; Manteuffel, T. A., Minimal residual method stronger than polynomial preconditioning, SIAM J. Matrix Anal. Appl., 17, 4, 707-729 (1996) · Zbl 0862.65019
[41] Sosonkina, M.; Watson, L. T.; Kapania, R. K.; Walker, H. F., A new adaptive GMRES algorithm for achieving high accuracy, Numer. Linear Algebra Appl., 5, 4, 275-297 (1998) · Zbl 0937.65037
[42] de Sturler, E., Truncation strategies for optimal Krylov subspace methods, SIAM J. Numer. Anal., 36, 3, 864-889 (1999) · Zbl 0960.65031
[43] Baker, A. H.; Jessup, E. R.; Manteuffel, T. A., A technique for accelerating the convergence of restarted GMRES, SIAM J. Matrix Anal. Appl., 26, 4, 962-984 (2005) · Zbl 1086.65025
[44] Giraud, L.; Gratton, S.; Pinel, X.; Vasseur, X., Flexible GMRES with deflated restarting, SIAM J. Sci. Comput., 32, 4, 1858-1878 (2010) · Zbl 1215.65057
[45] Soodhalter, K. M.; de Sturler, E.; Kilmer, M. E., A survey of subspace recycling iterative methods, GAMM-Mitteilungen, 43, 4, e202000016 (2020) · Zbl 1541.65019
[46] Embree, M., The tortoise and the hare restart GMRES, SIAM Rev., 45, 2, 259-266 (2003) · Zbl 1027.65039
[47] Walker, H. F., Implementation of the GMRES method using Householder transformations, SIAM J. Sci. Stat. Comput., 9, 1, 152-163 (1988) · Zbl 0698.65021
[48] Walker, H. F., Implementations of the GMRES method, Comput. Phys. Commun., 53, 1-3, 311-320 (1989) · Zbl 0798.65041
[49] Golub, G. H.; Van Loan, C. F., Matrix computations (2013), Johns Hopkins University Press: Johns Hopkins University Press Baltimore, MD · Zbl 1268.65037
[50] Drkošová, J.; Greenbaum, A.; Rozložník, M.; Strakoš, Z., Numerical stability of GMRES, BIT, 35, 3, 309-330 (1995) · Zbl 0837.65040
[51] Walker, H. F.; Zhou, L., A simpler GMRES, Numer. Linear Algebra Appl., 1, 6, 571-581 (1994) · Zbl 0838.65030
[52] Jiránek, P.; Rozložník, M.; Gutknecht, M. H., How to make simpler GMRES and GCR more stable, SIAM J. Matrix Anal. Appl., 30, 4, 1483-1499 (2008) · Zbl 1176.65036
[53] Jiránek, P.; Rozložník, M., Adaptive version of simpler GMRES, Numer. Algorithms, 53, 1, 93-112 (2010) · Zbl 1188.65033
[54] Liesen, J., Computable convergence bounds for GMRES, SIAM J. Matrix Anal. Appl., 21, 3, 882-903 (2000) · Zbl 0958.65036
[55] Liesen, J.; Rozložník, M.; Strakoš, Z., Least squares residuals and minimal residual methods, SIAM J. Sci. Comput., 23, 5, 1503-1525 (2002) · Zbl 1012.65037
[56] Chen, G.; Jia, Z., Theoretical and numerical comparisons of GMRES and WZ-GMRES, Comput. Math. Appl., 47, 8, 1335-1350 (2004) · Zbl 1071.65037
[57] Greenbaum, A.; Strakoš, Z., Matrices that generate the same Krylov residual spaces, Recent Advances in Iterative Methods, 95-118 (1994), Springer: Springer New York, NY · Zbl 0803.65029
[58] Paige, C. C.; Saunders, M. A., Solution of sparse indefinite systems of linear equations, SIAM J. Numer. Anal., 12, 4, 617-629 (1975) · Zbl 0319.65025
[59] Elman, H. C., Iterative Methods for Large, Sparse, Nonsymmetric Systems of Linear Equations (1982), Technische Universität Hamburg, Ph.D. thesis
[60] Eisenstat, S. C.; Elman, H. C.; Schultz, M. H., Variational iterative methods for nonsymmetric systems of linear equations, SIAM J. Numer. Anal., 20, 2, 345-357 (1983) · Zbl 0524.65019
[61] Young, D. M.; Jea, K. C., Generalized conjugate-gradient acceleration of nonsymmetrizable iterative methods, Linear Algebra Appl., 34, 159-194 (1980) · Zbl 0463.65025
[62] Jea, K. C.; Young, D. M., On the simplification of generalized conjugate-gradient methods for nonsymmetrizable linear systems, Linear Algebra Appl., 52-53, 399-417 (1983) · Zbl 0535.65018
[63] Vinsome, P. K.W., Orthomin, an Iterative Method for Solving Sparse Sets of Simultaneous Linear Equations, Proceedings of the Fourth Symposium on Reservoir Simulation, 149-159 (1976), Society of Petroleum Engineers of AIME: Society of Petroleum Engineers of AIME Los Angeles, CA, USA
[64] Axelsson, O., Conjugate gradient type methods for unsymmetric and inconsistent systems of linear equations, Linear Algebra Appl., 29, 1-16 (1980) · Zbl 0439.65020
[65] Khabaza, I. M., An iterative least-square method suitable for solving large sparse matrices, Comput. J., 6, 2, 202-206 (1963) · Zbl 0131.33901
[66] Eirola, T.; Nevanlinna, O., Accelerating with rank-one updates, Linear Algebra Appl., 121, 511-520 (1989) · Zbl 0683.65018
[67] Vuik, C.; van der Vorst, H. A., A comparison of some GMRES-like methods, Linear Algebra Appl., 160, 131-162 (1992) · Zbl 0749.65027
[68] van der Vorst, H. A.; Vuik, C., GMRESR: A family of nested GMRES methods, Numer. Linear Algebra Appl., 1, 4, 369-386 (1994) · Zbl 0839.65040
[69] Haelterman, R.; Degroote, J.; Van Heule, D.; Vierendeels, J., On the similarities between the quasi-Newton inverse least squares method and GMRes, SIAM J. Numer. Anal., 47, 6, 4660-4679 (2010) · Zbl 1209.65048
[70] Haelterman, R.; Lauwens, B.; Van Utterbeeck, F.; Bruyninckx, H.; Vierendeels, J., On the similarities between the quasi-Newton least squares method and GMRes, J. Comput. Appl. Math., 273, 6, 25-28 (2015) · Zbl 1295.65036
[71] Sidi, A., Extrapolation vs. projection methods for linear systems of equations, J. Comput. Appl. Math., 22, 1, 71-88 (1988) · Zbl 0646.65031
[72] Smith, D. A.; Ford, W. F.; Sidi, A., Extrapolation methods for vector sequences, SIAM Rev., 29, 2, 199-233 (1987) · Zbl 0622.65003
[73] Walker, H. F.; Ni, P., Anderson acceleration for fixed-point iterations, SIAM J. Numer. Anal., 49, 4, 1715-1735 (2011) · Zbl 1254.65067
[74] Brezinski, C.; Redivo-Zaglia, M.; Saad, Y., Shanks sequence transformations and Anderson acceleration, SIAM Rev., 60, 3, 646-669 (2018) · Zbl 1395.65001
[75] Greenbaum, A.; Gurvits, L., Max-min properties of matrix factor norms, SIAM J. Sci. Comput., 15, 2, 348-358 (1994) · Zbl 0799.15014
[76] Joubert, W. D., A robust GMRES-based adaptive polynomial preconditioning algorithm for nonsymmetric linear systems, SIAM J. Sci. Comput., 15, 2, 427-439 (1994) · Zbl 0806.65030
[77] Beckermann, B.; Goreinov, S. A.; Tyrtyshnikov, E. E., Some remarks on the Elman estimate for GMRES, SIAM J. Matrix Anal. Appl., 27, 3, 772-778 (2005) · Zbl 1101.65032
[78] (in French) · Zbl 1076.47004
[79] Tichý, P.; Liesen, J.; Faber, V., On worst-case GMRES, ideal GMRES, and the polynomial numerical hull of a Jordan block, Electron. Trans. Numer. Anal., 26, 453-473 (2007) · Zbl 1171.65373
[80] Greenbaum, A.; Trefethen, L. N., GMRES/CR and Arnoldi/Lanczos as matrix approximation problems, SIAM J. Sci. Comput., 15, 2, 359-368 (1994) · Zbl 0806.65031
[81] Liesen, J.; Tichý, P., On best approximations of polynomials in matrices in the matrix 2-norm, SIAM J. Matrix Anal. Appl., 31, 2, 853-863 (2009) · Zbl 1190.41011
[82] Faber, V.; Liesen, J.; Tichý, P., Properties of worst-case GMRES, SIAM J. Matrix Anal. Appl, 34, 4, 1500-1519 (2013) · Zbl 1291.65096
[83] Liesen, J.; Tichý, P., The worst-case GMRES for normal matrices, BIT, 44, 1, 79-98 (2004) · Zbl 1053.65021
[84] Toh, K.-C., GMRES vs. ideal GMRES, SIAM J. Matrix Anal. Appl., 18, 1, 30-36 (1997) · Zbl 0877.65014
[85] Liesen, J.; Tichý, P., Convergence analysis of Krylov subspace methods, GAMM-Mitteilungen, 27, 2, 153-173 (2004) · Zbl 1071.65041
[86] Starke, G., Field-of-values analysis of preconditioned iterative methods for nonsymmetric elliptic problems, Numer. Math., 78, 1, 103-117 (1997) · Zbl 0888.65037
[87] Liesen, J.; Tichý, P., The field of values bound on ideal GMRES
[88] Eiermann, M., Fields of values and iterative methods, Linear Algebra Appl., 180, 167-197 (1993) · Zbl 0784.65022
[89] Benzi, M., Some uses of the field of values in numerical analysis, Boll. Unione. Mat. Ital., 14, 1, 159-177 (2021) · Zbl 1470.65084
[90] Nevanlinna, O., Convergence of iterations for linear equations (1993), Birkhäuser: Birkhäuser Basel · Zbl 0846.47008
[91] Greenbaum, A., Generalizations of the field of values useful in the study of polynomial functions of a matrix, Linear Algebra Appl., 347, 1, 233-249 (2002) · Zbl 1004.15027
[92] Faber, V.; Greenbaum, A.; Marshall, D. E., The polynomial numerical hulls of Jordan blocks and related matrices, Linear Algebra Appl., 374, 231-246 (2003) · Zbl 1044.15019
[93] Greenbaum, A., Some theoretical results derived from polynomial numerical hulls of Jordan blocks, Electron. Trans. Numer. Anal., 18, 81-90 (2004) · Zbl 1068.15039
[94] Trefethen, L. N., Approximation Theory and Numerical Linear Algebra, 336-360 (1990), Chapman and Hall: Chapman and Hall London · Zbl 0747.41005
[95] Nachtigal, N. M.; Reddy, S. C.; Trefethen, L. N., How fast are nonsymmetric matrix iterations?, SIAM J. Matrix Anal. Appl., 13, 3, 778-795 (1992) · Zbl 0754.65036
[96] Trefethen, L. N.; Embree, M., Spectra and pseudospectra: The behavior of nonnormal matrices and operators (2005), Princeton University Press: Princeton University Press Princeton · Zbl 1085.15009
[97] Embree, M., How Descriptive Are GMRES Convergence Bounds?, Technical Report (1999), Oxford University Computing Laboratory
[98] Titley-Peloquin, D.; Pestana, J.; Wathen, A. J., GMRES convergence bounds that depend on the right-hand-side vector, IMA J. Numer. Anal., 34, 2, 462-479 (2014) · Zbl 1302.65083
[99] Pestana, J.; Wathen, A. J., On the choice of preconditioner for minimum residual methods for non-Hermitian matrices, J. Comput. Appl. Math., 249, 57-68 (2013) · Zbl 1285.65020
[100] Sacchi, G.; Simoncini, V., A GMRES convergence analysis for localized invariant subspace ill-conditioning, SIAM J. Matrix Anal. Appl., 40, 2, 542-563 (2019) · Zbl 1420.65059
[101] Greenbaum, A.; Pták, V.; Strakoš, Z., Any nonincreasing convergence curve is possible for GMRES, SIAM J. Matrix Anal. Appl., 17, 3, 465-469 (1996) · Zbl 0857.65029
[102] Arioli, M.; Pták, V.; Strakoš, Z., Krylov sequences of maximal length and convergence of GMRES, BIT, 38, 4, 636-643 (1998) · Zbl 0916.65031
[103] Duintjer Tebbens, J.; Meurant, G.; Sadok, H.; Strakoš, Z., On investigating GMRES convergence using unitary matrices, Linear Algebra Appl., 450, 83-107 (2014) · Zbl 1302.65076
[104] Meurant, G., GMRES and the Arioli, Pták, and Strakoš parametrization, BIT, 52, 3, 687-702 (2012) · Zbl 1253.65047
[105] Duintjer Tebbens, J.; Meurant, G., Any Ritz value behavior is possible for Arnoldi and for GMRES, SIAM J. Matrix Anal. Appl., 33, 3, 958-978 (2012) · Zbl 1266.65060
[106] Duintjer Tebbens, J.; Meurant, G., Prescribing the behavior of early terminating GMRES and Arnoldi iterations, Numer. Algorithms, 65, 1, 69-90 (2014) · Zbl 1288.65037
[107] Du, K.; Duintjer Tebbens, J.; Meurant, G., Any admissible harmonic Ritz value set is possible for GMRES, Electron. Trans. Numer. Anal., 47, 37-56 (2017) · Zbl 1372.65107
[108] Vecharynski, E.; Langou, J., Any admissible cycle-convergence behavior is possible for restarted GMRES at its initial cycles, Numer. Linear Algebra Appl., 18, 3, 499-511 (2011) · Zbl 1249.65073
[109] Duintjer Tebbens, J.; Meurant, G., On the residual norms, the Ritz values and the harmonic Ritz values that can be generated by restarted GMRES, Numer. Algorithms, 84, 4, 1329-1352 (2020) · Zbl 1444.65011
[110] Kubínová, M.; Soodhalter, K. M., Admissible and attainable convergence behavior of block Arnoldi and GMRES, SIAM J. Matrix Anal. Appl., 41, 2, 464-486 (2020) · Zbl 1440.65042
[111] Goossens, S.; Roose, D., Ritz and harmonic Ritz values and the convergence of FOM and GMRES, Numer. Linear Algebra Appl., 6, 4, 281-293 (1999) · Zbl 0983.65034
[112] Meurant, G., The coefficients of the FOM and GMRES residual polynomials, SIAM J. Matrix Anal. Appl., 38, 1, 96-117 (2017) · Zbl 1354.65064
[113] Campbell, S. L.; Ipsen, I. C.F.; Kelley, C. T.; Meyer, C. D., GMRES and the minimal polynomial, BIT, 36, 4, 664-675 (1996) · Zbl 0865.65017
[114] Ipsen, I. C.F., Expressions and bounds for the GMRES residual, BIT, 40, 3, 524-535 (2000) · Zbl 0962.65030
[115] Liesen, J.; Strakoš, Z., Convergence of GMRES for tridiagonal Toeplitz matrices, SIAM J. Matrix Anal. Appl., 26, 1, 233-251 (2004) · Zbl 1079.65031
[116] Sadok, H., Analysis of the convergence of the minimal and the orthogonal residual methods, Numer. Algorithms, 40, 2, 201-216 (2005) · Zbl 1086.65031
[117] van der Sluis, A.; van der Vorst, H. A., The rate of convergence of conjugate gradients, Numer. Math., 48, 5, 543-560 (1986) · Zbl 0596.65015
[118] van der Vorst, H. A.; Vuik, C., The superlinear convergence behaviour of GMRES, J. Comput. Appl. Math., 48, 3, 327-341 (1993) · Zbl 0797.65026
[119] Simoncini, V.; Szyld, D. B., On the occurrence of superlinear convergence of exact and inexact Krylov subspace methods, SIAM Rev., 47, 2, 247-272 (2005) · Zbl 1079.65034
[120] Moret, I., A note on the superlinear convergence of GMRES, SIAM J. Numer. Anal., 34, 2, 513-516 (1997) · Zbl 0873.65054
[121] Blechta, J., Stability of linear GMRES convergence with respect to compact perturbations, SIAM J. Matrix Anal. Appl., 42, 1, 436-447 (2021) · Zbl 1467.65025
[122] Zavorin, I.; O’Leary, D. P.; Elman, H., Complete stagnation of GMRES, Linear Algebra Appl., 367, 165-183 (2003) · Zbl 1025.65022
[123] Simoncini, V.; Szyld, D. B., New conditions for non-stagnation of minimal residual methods, Numer. Math., 109, 3, 477-487 (2008) · Zbl 1151.65026
[124] Simoncini, V., On a non-stagnation condition for GMRES and application to saddle point matrices, Electron. Trans. Numer. Anal., 37, 202-213 (2010) · Zbl 1206.65136
[125] Meurant, G., The complete stagnation of GMRES for \(n \leq 4\), Electron. Trans. Numer. Anal., 39, 75-101 (2012) · Zbl 1321.65049
[126] Meurant, G., Necessary and sufficient conditions for GMRES complete and partial stagnation, Appl. Numer. Math., 75, 100-107 (2014) · Zbl 1302.65079
[127] Joubert, W. D., On the convergence behavior of the restarted GMRES algorithm for solving nonsymmetric linear systems, Numer. Linear Algebra Appl., 1, 5, 427-447 (1994) · Zbl 0838.65029
[128] Zítko, J., Generalization of convergence conditions for a restarted GMRES, Numer. Linear Algebra Appl., 7, 3, 117-131 (2000) · Zbl 0983.65032
[129] Zítko, J., Some remarks on the restarted and augmented GMRES method, Electron. Trans. Numer. Anal., 31, 221-227 (2008) · Zbl 1171.65024
[130] Baker, A. H.; Jessup, E. R.; Kolev, T. V., A simple strategy for varying the restart parameter in GMRES \(( m )\), J. Comput. Appl. Math., 230, 2, 751-761 (2009) · Zbl 1169.65024
[131] Vecharynski, E.; Langou, J., The cycle-convergence of restarted GMRES for normal matrices is sublinear, SIAM J. Sci. Comput., 32, 1, 186-196 (2010) · Zbl 1210.65084
[132] Greenbaum, A.; Rozložník, M.; Strakoš, Z., Numerical behaviour of the modified Gram-Schmidt GMRES implementation, BIT, 37, 3, 706-719 (1997) · Zbl 0891.65031
[133] Paige, C. C.; Strakoš, Z., Residual and backward error bounds in minimum residual Krylov subspace methods, SIAM J. Sci. Comput., 23, 6, 1898-1923 (2002) · Zbl 1035.65031
[134] Matinfar, M.; Zareamoghaddam, H.; Eslami, M.; Saeidy, M., GMRES implementations and residual smoothing techniques for solving ill-posed linear systems, Comput. Math. Appl., 63, 1, 1-13 (2012) · Zbl 1238.65024
[135] Erlangga, Y. A.; Nabben, R., Multilevel projection-based nested Krylov iteration for boundary value problems, SIAM J. Sci. Comput., 30, 3, 1572-1595 (2008) · Zbl 1178.65032
[136] Erlangga, Y. A.; Nabben, R., On a multilevel Krylov method for the Helmholtz equation preconditioned by shifted Laplacian, Electron. Trans. Numer. Anal., 31, 403-424 (2008) · Zbl 1190.65050
[137] Saad, Y., A flexible inner-outer preconditioned GMRES algorithm, SIAM J. Sci. Comput., 14, 2, 461-469 (1993) · Zbl 0780.65022
[138] Arioli, M.; Duff, I. S.; Gratton, S.; Pralet, S., A note on GMRES preconditioned by a perturbed \(L D L^T\) decomposition with static pivoting, SIAM J. Sci. Comput., 29, 5, 2024-2044 (2007) · Zbl 1161.65023
[139] Greif, C.; Rees, T.; Szyld, D. B., GMRES with multiple preconditioners, SeMA J., 74, 2, 213-231 (2017) · Zbl 1383.65026
[140] Calandra, H.; Gratton, S.; Langou, J.; Pinel, X.; Vasseur, X., Flexible variants of block restarted GMRES methods with application to geophysics, SIAM J. Sci. Comput., 34, 2, A714-A736 (2012) · Zbl 1248.65036
[141] Calandra, H.; Gratton, S.; Lago, R.; Vasseur, X.; Carvalho, L. M., A modified block flexible GMRES method with deflation at each iteration for the solution of non-Hermitian linear systems with multiple right-hand sides, SIAM J. Sci. Comput., 35, 5, S345-S367 (2013) · Zbl 1281.65056
[142] Frayssé, V.; Giraud, L.; Gratton, S., Algorithm 881: a set of flexible GMRES routines for real and complex arithmetics on high-performance computers, ACM Trans. Math. Softw., 35, 2, 13:1-13:12 (2008)
[143] Vuik, C., New insights in GMRES-like methods with variable preconditioners, J. Comput. Appl. Math., 61, 2, 189-204 (1995) · Zbl 0844.65021
[144] de Sturler, E., Nested Krylov methods based on GCR, J. Comput. Appl. Math., 67, 1, 15-41 (1996) · Zbl 0854.65026
[145] Liu, Q.; Morgan, R. B.; Wilcox, W., Polynomial preconditioned GMRES and GMRES-DR, SIAM J. Sci. Comput., 37, 5, S407-S428 (2015) · Zbl 1325.65047
[146] Loe, J. A.; Morgan, R. B., Toward efficient polynomial preconditioning for GMRES, Numer. Linear Algebra Appl., 29, 4, e2427 (2022) · Zbl 07584135
[147] Loe, J. A.; Thornquist, H. K.; Boman, E. G., Polynomial preconditioned GMRES in Trilinos: Practical considerations for high-performance computing, Proceedings of the SIAM Conference on Parallel Processing for Scientific Computing, 35-45 (2020), SIAM: SIAM Seattle, WA, USA
[148] Nachtigal, N. M.; Reichel, L.; Trefethen, L. N., A hybrid GMRES algorithm for nonsymmetric linear systems, SIAM J. Matrix Anal. Appl., 13, 3, 796-825 (1992) · Zbl 0757.65035
[149] Starke, G.; Varga, R. S., A hybrid Arnoldi-Faber iterative method for nonsymmetric systems of linear equations, Numer. Math., 64, 1, 213-240 (1993) · Zbl 0795.65015
[150] van Gijzen, M. B., A polynomial preconditioner for the GMRES algorithm, J. Comput. Appl. Math., 59, 1, 91-107 (1995) · Zbl 0831.65033
[151] Embree, M.; Loe, J. A.; Morgan, R. B., Polynomial preconditioned Arnoldi with stability control, SIAM J. Sci. Comput., 43, 1, A1-A25 (2021) · Zbl 1464.65035
[152] Ye, X.; Xi, Y.; Saad, Y., Proxy-GMRES: preconditioning via GMRES in polynomial space, SIAM J. Matrix Anal. Appl., 42, 3, 1248-1267 (2021) · Zbl 1528.65020
[153] McInnes, L. C.; Smith, B. F.; Zhang, H.; Mills, R. T., Hierarchical Krylov and nested Krylov methods for extreme-scale computing, Parallel Comput., 40, 1, 17-31 (2014)
[154] Morgan, R. B., A restarted GMRES method augmented with eigenvectors, SIAM J. Matrix Anal. Appl., 16, 4, 1154-1171 (1995) · Zbl 0836.65050
[155] Morgan, R. B., Implicitly restarted GMRES and Arnoldi methods for nonsymmetric systems of equations, SIAM J. Matrix Anal. Appl., 21, 4, 1112-1135 (2000) · Zbl 0963.65038
[156] Chapman, A.; Saad, Y., Deflated and augmented Krylov subspace techniques, Numer. Linear Algebra Appl., 4, 1, 43-66 (1997) · Zbl 0889.65028
[157] Saad, Y., Analysis of augmented Krylov subspace methods, SIAM J. Matrix Anal. Appl., 18, 2, 435-449 (1997) · Zbl 0871.65026
[158] Lehoucq, R. B.; Sorensen, D. C., Deflation techniques for an implicitly restarted Arnoldi iteration, SIAM J. Matrix Anal. Appl., 17, 4, 789-821 (1996) · Zbl 0863.65016
[159] Le Calvez, C.; Molina, B., Implicitly restarted and deflated GMRES, Numer. Algorithms, 21, 1-4, 261-285 (1999) · Zbl 0936.65035
[160] Morgan, R. B., GMRES with deflated restarting, SIAM J. Sci. Comput., 24, 1, 20-37 (2002) · Zbl 1018.65042
[161] Wu, K.; Simon, H., Thick-restart Lanczos method for large symmetric eigenvalue problems, SIAM J. Matrix Anal. Appl., 22, 2, 602-616 (2000) · Zbl 0969.65030
[162] Röllin, S.; Fichtner, W., Improving the accuracy of GMRes with deflated restarting, SIAM J. Sci. Comput., 30, 1, 232-245 (2008) · Zbl 1166.65329
[163] Morgan, R. B.; Yang, Z.; Zhong, B., Pseudoeigenvector bases and deflated GMRES for highly nonnormal matrices, Numer. Linear Algebra Appl., 23, 6, 1032-1045 (2016) · Zbl 1413.65071
[164] Kharchenko, S. A.; Yeremin, A. Y., Eigenvalue translation based preconditioners for the GMRES \(( k )\) method, Numer. Linear Algebra Appl., 2, 1, 51-77 (1995) · Zbl 0829.65036
[165] Erhel, J.; Burrage, K.; Pohl, B., Restarted GMRES preconditioned by deflation, J. Comput. Appl. Math., 69, 2, 303-318 (1996) · Zbl 0854.65025
[166] Baglama, J.; Calvetti, D.; Golub, G. H.; Reichel, L., Adaptively preconditioned GMRES algorithms, SIAM J. Sci. Comput., 20, 1, 243-269 (1998) · Zbl 0954.65026
[167] Burrage, K.; Erhel, J., On the performance of various adaptive preconditioned GMRES strategies, Numer. Linear Algebra Appl., 5, 2, 101-121 (1998) · Zbl 0937.65036
[168] Moriya, K.; Nodera, T., The DEFLATED-GMRES \(( m , k )\) method with switching the restart frequency dynamically, Numer. Linear Algebra Appl., 7, 7-8, 569-584 (2000) · Zbl 1051.65037
[169] Imakura, A.; Li, R.-C.; Zhang, S.-L., Locally optimal and heavy ball GMRES methods, Jpn. J. Ind. Appl. Math., 33, 2, 471-499 (2016) · Zbl 1354.65063
[170] Parks, M. L.; de Sturler, E.; Mackey, G.; Johnson, D. D.; Maiti, S., Recycling Krylov subspaces for sequences of linear systems, SIAM J. Sci. Comput., 28, 5, 1651-1674 (2006) · Zbl 1123.65022
[171] Gutknecht, M. H., Spectral deflation in Krylov solvers: a theory of coordinate space based methods, Electron. Trans. Numer. Anal., 39, 156-185 (2012) · Zbl 1285.65021
[172] Gaul, A.; Gutknecht, M. H.; Liesen, J.; Nabben, R., A framework for deflated and augmented Krylov subspace methods, SIAM J. Matrix Anal. Appl., 34, 2, 495-518 (2013) · Zbl 1273.65049
[173] Essai, A., Weighted FOM and GMRES for solving nonsymmetric linear systems, Numer. Algorithms, 18, 3-4, 277-292 (1998) · Zbl 0926.65036
[174] Cao, Z.-H.; Yu, X.-Y., A note on weighted FOM and GMRES for solving nonsymmetric linear systems, Appl. Math. Comput., 151, 3, 719-727 (2004) · Zbl 1053.65017
[175] Ayachour, E. H., A fast implementation for GMRES method, J. Comput. Appl. Math., 159, 2, 269-283 (2003) · Zbl 1032.65026
[176] Saberi Najafi, H.; Zareamoghaddam, H., A new computational GMRES method, Appl. Math. Comput., 199, 2, 527-534 (2008) · Zbl 1143.65031
[177] Niu, Q.; Lu, L.; Zhou, J., Accelerate weighted GMRES by augmenting error approximations, Int. J. Comput. Math., 87, 9, 2101-2112 (2010) · Zbl 1195.65039
[178] Embree, M.; Morgan, R. B.; Nguyen, H. V., Weighted inner products for GMRES and GMRES-DR, SIAM J. Sci. Comput., 39, 5, S610-S632 (2017) · Zbl 1392.65051
[179] Güttel, S.; Pestana, J., Some observations on weighted GMRES, Numer. Algorithms, 67, 4, 733-752 (2014) · Zbl 1304.65127
[180] Bouras, A.; Frayssé, V., A Relaxation Strategy for Inexact Matrix-Vector Products for Krylov Methods, Technical Report (2000), CERFACS
[181] Bouras, A.; Frayssé, V., Inexact matrix-vector products in Krylov methods for solving linear systems: a relaxation strategy, SIAM J. Matrix Anal. Appl., 26, 3, 660-678 (2005) · Zbl 1075.65041
[182] Simoncini, V.; Szyld, D. B., Theory of inexact Krylov subspace methods and applications to scientific computing, SIAM J. Sci. Comput., 25, 2, 454-477 (2003) · Zbl 1048.65032
[183] van den Eshof, J.; Sleijpen, G. L.G., Inexact Krylov subspace methods for linear systems, SIAM J. Matrix Anal. Appl., 26, 1, 125-153 (2004) · Zbl 1079.65036
[184] Giraud, L.; Gratton, S.; Langou, J., Convergence in backward error of relaxed GMRES, SIAM J. Sci. Comput., 29, 2, 710-728 (2007) · Zbl 1142.65031
[185] Sifuentes, J. A.; Embree, M.; Morgan, R. B., GMRES convergence for perturbed coefficient matrices, with application to approximate deflation preconditioning, SIAM J. Matrix Anal. Appl., 34, 3, 1066-1088 (2013) · Zbl 1314.65051
[186] Sidje, R. B.; Winkles, N., Evaluation of the performance of inexact GMRES, J. Comput. Appl. Math., 235, 8, 1956-1975 (2011) · Zbl 1209.65040
[187] Dolgov, S. V., TT-GMRES: Solution to a linear system in the structured tensor format, Russ. J. Numer. Anal. Math. Model., 28, 2, 149-172 (2013) · Zbl 1266.65050
[188] Ballani, J.; Grasedyck, L., A projection method to solve linear systems in tensor format, Numer. Linear Algebra Appl., 20, 1, 27-43 (2013) · Zbl 1289.65049
[189] Abdelfattah, A.; Anzt, H.; Boman, E. G.; Carson, E. C.; Cojean, T.; Dongarra, J.; Fox, A.; Gates, M.; Higham, N. J.; Li, X. S.; Loe, J.; Luszczek, P.; Pranesh, S.; Rajamanickam, S.; Ribizel, T.; Smith, B. F.; Swirydowicz, K.; Thomas, S.; Tomov, S.; Tsai, Y. M.; Yang, U. M., A survey of numerical linear algebra methods utilizing mixed-precision arithmetic, Int. J. High Perform. Comput. Appl., 35, 4, 344-369 (2021)
[190] Moler, C. B., Iterative refinement in floating point, J. ACM, 14, 2, 316-321 (1967) · Zbl 0161.35501
[191] Gratton, S.; Simon, E.; Titley-Peloquin, D.; Toint, P., Exploiting variable precision in GMRES
[192] Giraud, L.; Langou, J.; Rozložník, M.; van den Eshof, J., Rounding error analysis of the classical Gram-Schmidt orthogonalization process, Numer. Math., 101, 1, 87-100 (2005) · Zbl 1075.65060
[193] Giraud, L.; Langou, J.; Rozložník, M., The loss of orthogonality in the Gram-Schmidt orthogonalization process, Comput. Math. Appl., 50, 7, 1069-1075 (2005) · Zbl 1085.65037
[194] Lindquist, N.; Luszczek, P.; Dongarra, J., Accelerating restarted GMRES with mixed precision arithmetic, IEEE Trans. Parallel Distrib. Syst., 33, 4, 1027-1037 (2021)
[195] Turner, K.; Walker, H. F., Efficient high accuracy solutions with GMRES \(( m )\), SIAM J. Sci. Stat. Comput., 13, 3, 815-825 (1992) · Zbl 0758.65029
[196] Arioli, M.; Duff, I. S., Using FGMRES to obtain backward stability in mixed precision, Electron. Trans. Numer. Anal., 33, 31-44 (2009) · Zbl 1171.65018
[197] Carson, E. C.; Higham, N. J., Accelerating the solution of linear systems by iterative refinement in three precisions, SIAM J. Sci. Comput., 40, 2, A817-A847 (2018) · Zbl 1453.65067
[198] Carson, E. C.; Higham, N. J., A new analysis of iterative refinement and its application to accurate solution of ill-conditioned sparse linear systems, SIAM J. Sci. Comput., 39, 6, A2834-A2856 (2017) · Zbl 1379.65019
[199] P. Amestoy, A. Buttari, N.J. Higham, J.-Y. L’Excellent, T. Mary, B. Vieublé, Five-precision GMRES-based iterative refinement, 2021,
[200] Higham, N. J.; Pranesh, S.; Zounon, M., Squeezing a matrix into half precision, with an application to solving linear systems, SIAM J. Sci. Comput., 41, 4, A2536-A2551 (2019) · Zbl 1420.65017
[201] Yamazaki, I.; Tomov, S.; Kurzak, J.; Dongarra, J.; Barlow, J. L., Mixed-precision block Gram Schmidt orthogonalization, Proceedings of the 6th Workshop on Latest Advances in Scalable Algorithms for Large-Scale Systems, 2:1-2:8 (2015), ACM: ACM New York, NY, USA
[202] Yang, L. M.; Fox, A.; Sanders, G., Rounding error analysis of mixed precision block Householder QR algorithms, SIAM J. Sci. Comput., 43, 3, A1723-A1753 (2021) · Zbl 1512.65066
[203] di Brozolo, G. R.; Robert, Y., Parallel conjugate gradient-like algorithms for solving sparse nonsymmetric linear systems on a vector multiprocessor, Parallel Comput., 11, 2, 223-239 (1989) · Zbl 0678.65017
[204] Shadid, J. N.; Tuminaro, R. S., Sparse iterative algorithm software for large-scale MIMD machines: an initial discussion and implementation, Concurr. Pract. Exp., 4, 6, 481-497 (1992)
[205] da Cunha, R. D.; Hopkins, T., A parallel implementation of the restarted GMRES iterative algorithm for nonsymmetric systems of linear equations, Adv. Comput. Math., 2, 3, 261-277 (1994) · Zbl 0829.65035
[206] Demmel, J. W.; Heath, M. T.; van der Vorst, H. A., Parallel numerical linear algebra, Acta Numer., 2, 111-197 (1993) · Zbl 0793.65011
[207] Demmel, J. W.; Hoemmen, M.; Mohiyuddin, M.; Yelick, K., Avoiding Communication in Computing Krylov Subspaces, Technical Report (2007), UC Berkeley
[208] Demmel, J. W.; Hoemmen, M.; Mohiyuddin, M.; Yelick, K., Avoiding communication in sparse matrix computations, Proceedings of the International Parallel and Distributed Processing Symposium, 1-12 (2008), IEEE: IEEE Miami, FL, USA
[209] Mohiyuddin, M.; Hoemmen, M.; Demmel, J. W.; Yelick, K., Minimizing communication in sparse matrix solvers, Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis, 1-12 (2009), IEEE: IEEE Portland, OR, USA
[210] Ballard, G.; Carson, E. C.; Demmel, J. W.; Hoemmen, M.; Knight, N.; Schwartz, O., Communication lower bounds and optimal algorithms for numerical linear algebra, Acta Numer., 23, 1-155 (2014) · Zbl 1396.65082
[211] Yamazaki, I.; Hoemmen, M.; Luszczek, P.; Dongarra, J., Improving performance of GMRES by reducing communication and pipelining global collectives, Proceedings of the International Parallel and Distributed Processing Symposium, 1118-1127 (2017), IEEE: IEEE Lake Buena Vista, FL, USA
[212] de Sturler, E., A parallel variant of GMRES \(( m )\), Proceedings of the 13th IMACS World Congress on Computation and Applied Mathematics, 682-683 (1991), Criterion Press: Criterion Press Dublin, Ireland
[213] Bai, Z.; Hu, D.; Reichel, L., A Newton basis GMRES implementation, IMA J. Numer. Anal., 14, 4, 563-581 (1994) · Zbl 0818.65022
[214] Joubert, W. D.; Carey, G. F., Parallelizable restarted iterative methods for nonsymmetric linear systems. part I: theory, Int. J. Comput. Math., 44, 1-4, 243-267 (1992) · Zbl 0759.65008
[215] Joubert, W. D.; Carey, G. F., Parallelizable restarted iterative methods for nonsymmetric linear systems. part II: parallel implementation, Int. J. Comput. Math., 44, 1-4, 269-290 (1992) · Zbl 0759.65009
[216] Philippe, B.; Reichel, L., On the generation of Krylov subspace bases, Appl. Numer. Math., 62, 9, 1171-1186 (2012) · Zbl 1253.65049
[217] Carson, E. C., Communication-Avoiding Krylov Subspace Methods in Theory and Practice (2015), UC Berkeley, Ph.D. thesis
[218] Forsythe, G. E., On the asymptotic directions of the \(s\)-dimensional optimum gradient method, Numer. Math., 11, 1, 57-76 (1968) · Zbl 0153.46004
[219] Chronopoulos, A. T.; Kim, S. K., \(s\)-Step Orthomin and GMRES Implemented on Parallel Computers, Technical Report (1990), University of Minnesota
[220] Erhel, J., A parallel GMRES version for general sparse matrices, Electron. Trans. Numer. Anal., 3, 160-176 (1995) · Zbl 0860.65021
[221] de Sturler, E.; van der Vorst, H. A., Reducing the effect of global communication in GMRES \(( m )\) and CG on parallel distributed memory computers, Appl. Numer. Math., 18, 4, 441-459 (1995) · Zbl 0842.65019
[222] Demmel, J. W.; Grigori, L.; Hoemmen, M.; Langou, J., Communication-optimal parallel and sequential QR and LU factorizations, SIAM J. Sci. Comput., 34, 1, A206-A239 (2012) · Zbl 1241.65028
[223] Carson, E. C.; Lund, K.; Rozložník, M., The stability of block variants of classical Gram-Schmidt, SIAM J. Matrix Anal. Appl., 42, 3, 1365-1380 (2021) · Zbl 1476.65060
[224] Carson, E. C.; Lund, K.; Rozložník, M.; Thomas, S., Block Gram-Schmidt algorithms and their stability properties, Linear Algebra Appl., 638, 150-195 (2022) · Zbl 1490.65074
[225] Wakam, D. N.; Erhel, J., Parallelism and robustness in GMRES with a newton basis and deflated restarting, Electron. Trans. Numer. Anal., 40, 381-406 (2013) · Zbl 1288.65042
[226] Yamazaki, I.; Tomov, S.; Dongarra, J., Deflation strategies to improve the convergence of communication-avoiding GMRES, Proceedings of the 5th Workshop on Latest Advances in Scalable Algorithms for Large-Scale Systems, 39-46 (2014), IEEE: IEEE New Orleans, LA, USA
[227] Imberti, D.; Erhel, J., Varying the \(s\) in your \(s\)-step GMRES, Electron. Trans. Numer. Anal., 47, 206-230 (2017) · Zbl 1386.65108
[228] Yamazaki, I.; Anzt, H.; Tomov, S.; Hoemmen, M.; Dongarra, J., Improving the performance of CA-GMRES on multicores with multiple GPUs, Proceedings of the International Parallel and Distributed Processing Symposium, 382-391 (2014), IEEE: IEEE Phoenix, AZ, USA
[229] Yamazaki, I.; Thomas, S.; Hoemmen, M.; Boman, E. G.; Świrydowicz, K.; Elliott, J. J., Low-synchronization orthogonalization schemes for \(s\)-step and pipelined Krylov solvers in Trilinos, Proceedings of the SIAM Conference on Parallel Processing for Scientific Computing, 118-128 (2020), SIAM: SIAM Seattle, WA, USA
[230] Ghysels, P.; Ashby, T. J.; Meerbergen, K.; Vanroose, W., Hiding global communication latency in the GMRES algorithm on massively parallel machines, SIAM J. Sci. Comput., 35, 1, C48-C71 (2013) · Zbl 1273.65050
[231] Smoktunowicz, A.; Barlow, J. L.; Langou, J., A note on the error analysis of classical Gram-Schmidt, Numer. Math., 105, 2, 299-313 (2006) · Zbl 1108.65021
[232] Sanan, P.; Schnepp, S. M.; May, D. A., Pipelined, flexible Krylov subspace methods, SIAM J. Sci. Comput., 38, 5, C441-C470 (2016) · Zbl 1347.65067
[233] Morgan, H.; Sanan, P.; Knepley, M.; Mills, R. T., Understanding performance variability in standard and pipelined parallel Krylov solvers, Int. J. High Perform. Comput. Appl., 35, 1, 47-59 (2021)
[234] Eller, P. R., Scalable Non-blocking Krylov Solvers for Extreme-scale Computing (2019), University of Illinois at Urbana-Champaign, Ph.D. thesis
[235] Björck, A., Solving linear least squares problems by Gram-Schmidt orthogonalization, BIT, 7, 1, 1-21 (1967) · Zbl 0183.17802
[236] Bielich, D.; Langou, J.; Thomas, S.; Swirydowicz, K.; Yamazaki, I.; Boman, E. G., Low-synch Gram-Schmidt with delayed reorthogonalization for Krylov solvers, Parallel Comput., 112, 102940 (2022)
[237] Barlow, J. L.; Smoktunowicz, A., Reorthogonalized block classical Gram-Schmidt, Numer. Math., 123, 3, 395-423 (2013) · Zbl 1269.65042
[238] Barlow, J. L., Block modified Gram-Schmidt algorithms and their analysis, SIAM J. Matrix Anal. Appl., 40, 4, 1257-1290 (2019) · Zbl 1427.65054
[239] Vital, B., Etude de Quelques Méthodes de Résolution de Problèmes Linéaires de Grande Taille sur Multiprocesseur (1990), Université de Rennes 1, Ph.D. thesis
[240] Simoncini, V.; Gallopoulos, E., An iterative method for nonsymmetric systems with multiple right-hand sides, SIAM J. Sci. Comput., 16, 4, 917-933 (1995) · Zbl 0831.65037
[241] Simoncini, V.; Gallopoulos, E., Convergence properties of block GMRES and matrix polynomials, Linear Algebra Appl., 247, 97-119 (1996) · Zbl 0861.65023
[242] Gu, G.-D.; Cao, Z.-H., A block GMRES method augmented with eigenvectors, Appl. Math. Comput., 121, 2, 271-289 (2001) · Zbl 1024.65031
[243] Morgan, R. B., Restarted block-GMRES with deflation of eigenvalues, Appl. Numer. Math., 54, 2, 222-236 (2005) · Zbl 1074.65043
[244] Robbé, M.; Sadkane, M., Exact and inexact breakdowns in the block GMRES method, Linear Algebra Appl., 419, 1, 265-285 (2006) · Zbl 1112.65028
[245] Gutknecht, M. H.; Schmelzer, T., The block grade of a block Krylov space, Linear Algebra Appl., 430, 1, 174-185 (2009) · Zbl 1163.65015
[246] Agullo, E.; Giraud, L.; Jing, Y.-F., Block GMRES method with inexact breakdowns and deflated restarting, SIAM J. Matrix Anal. Appl., 35, 4, 1625-1651 (2014) · Zbl 1355.65051
[247] Al Daas, H.; Grigori, L.; Hénon, P.; Ricoux, P., Enlarged GMRES for solving linear systems with one or multiple right-hand sides, IMA J. Numer. Anal., 39, 4, 1924-1956 (2019) · Zbl 1496.65045
[248] Frommer, A.; Lund, K.; Szyld, D. B., Block Krylov subspace methods for functions of matrices II: modified block FOM, SIAM J. Matrix Anal. Appl., 41, 2, 804-837 (2020) · Zbl 1441.65051
[249] Tajaddini, A.; Wu, G.; Saberi-Movahed, F.; Azizizadeh, N., Two new variants of the simpler block GMRES method with vector deflation and eigenvalue deflation for multiple linear systems, J. Sci. Comput., 86, 1, 9:1-9:33 (2021) · Zbl 1458.65034
[250] Baker, A. H.; Dennis, J. M.; Jessup, E. R., On improving linear solver performance: a block variant of GMRES, SIAM J. Sci. Comput., 27, 5, 1608-1626 (2006) · Zbl 1099.65029
[251] Jbilou, K.; Messaoudi, A.; Sadok, H., Global FOM and GMRES algorithms for matrix equations, Appl. Numer. Math., 31, 1, 49-63 (1999) · Zbl 0935.65024
[252] Bouyouli, R.; Jbilou, K.; Sadaka, R.; Sadok, H., Convergence properties of some block Krylov subspace methods for multiple linear systems, J. Comput. Appl. Math., 196, 2, 498-511 (2006) · Zbl 1100.65024
[253] Elbouyahyaoui, L.; Messaoudi, A.; Sadok, H., Algebraic properties of the block GMRES and block Arnoldi methods, Electron. Trans. Numer. Anal., 33, 207-220 (2009) · Zbl 1188.65031
[254] Frommer, A.; Glässner, U., Restarted GMRES for shifted linear systems, SIAM J. Sci. Comput., 19, 1, 15-26 (1998) · Zbl 0912.65023
[255] Soodhalter, K. M.; Szyld, D. B.; Xue, F., Krylov subspace recycling for sequences of shifted linear systems, Appl. Numer. Math., 81, 105-118 (2014) · Zbl 1291.65108
[256] Soodhalter, K. M., Block Krylov subspace recycling for shifted systems with unrelated right-hand sides, SIAM J. Sci. Comput., 38, 1, A302-A324 (2016)
[257] Soodhalter, K. M., Two recursive GMRES-type methods for shifted linear systems with general preconditioning, Electron. Trans. Numer. Anal., 45, 499-523 (2016) · Zbl 1355.65055
[258] Saibaba, A. K.; Bakhos, T.; Kitanidis, P. K., A flexible Krylov solver for shifted systems with application to oscillatory hydraulic tomography, SIAM J. Sci. Comput., 35, 6, A3001-A3023 (2013) · Zbl 1288.65041
[259] Bakhos, T.; Kitanidis, P. K.; Ladenheim, S.; Saibaba, A. K.; Szyld, D. B., Multipreconditioned GMRES for shifted systems, SIAM J. Sci. Comput., 39, 5, S222-S247 (2017) · Zbl 1392.65043
[260] Darnell, D.; Morgan, R. B.; Wilcox, W., Deflated GMRES for systems with multiple shifts and multiple right-hand sides, Linear Algebra Appl., 429, 10, 2415-2434 (2008) · Zbl 1153.65032
[261] Sun, D.-L.; Huang, T.-Z.; Jing, Y.-F.; Carpentieri, B., A block GMRES method with deflated restarting for solving linear systems with multiple shifts and multiple right-hand sides, Numer. Linear Algebra Appl., 25, 5, e2148 (2018) · Zbl 1513.65085
[262] Saad, Y., Numerical solution of large Lyapunov equations, Proceedings of the International Symposium MTNS-89, 503-511 (1989), Birkhäuser: Birkhäuser Boston, MA · Zbl 0719.65034
[263] Robbé, M.; Sadkane, M., A convergence analysis of GMRES and FOM methods for Sylvester equations, Numer. Algorithms, 30, 1, 71-89 (2002) · Zbl 1005.65030
[264] Simoncini, V., Computational methods for linear matrix equations, SIAM Rev., 58, 3, 377-441 (2016) · Zbl 1386.65124
[265] Zadeh, N. A.; Tajaddini, A.; Wu, G., Weighted and deflated global GMRES algorithms for solving large Sylvester matrix equations, Numer. Algorithms, 82, 1, 155-181 (2019) · Zbl 1420.65040
[266] Elbouyahyaoui, L.; Heyouni, M.; Tajaddini, A.; Saberi-Movahed, F., On restarted and deflated block FOM and GMRES methods for sequences of shifted linear systems, Numer. Algorithms, 87, 3, 1257-1299 (2021) · Zbl 1469.65074
[267] Hayami, K.; Yin, J.-F.; Ito, T., GMRES methods for least squares problems, SIAM J. Matrix Anal. Appl., 31, 5, 2400-2430 (2010) · Zbl 1215.65071
[268] Chen, Z.; Lu, L., A projection method and Kronecker product preconditioner for solving Sylvester tensor equations, Sci. China Math., 55, 6, 1281-1292 (2012) · Zbl 1273.65048
[269] Jia, Z.; Ng, M. K., Structure preserving quaternion generalized minimal residual method, SIAM J. Matrix Anal. Appl., 42, 2, 616-634 (2021) · Zbl 1468.65030
[270] Fischer, B.; Ramage, A.; Silvester, D. J.; Wathen, A. J., Minimum residual methods for augmented systems, BIT, 38, 3, 527-543 (1998) · Zbl 0914.65026
[271] Benzi, M.; Golub, G. H.; Liesen, J., Numerical solution of saddle point problems, Acta Numer., 14, 1-137 (2005) · Zbl 1115.65034
[272] Frommer, A.; Jacob, B.; Kahl, K.; Wyss, C.; Zwaan, I., Krylov type methods for linear systems exploiting properties of the quadratic numerical range, Electron. Trans. Numer. Anal., 53, 541-561 (2020) · Zbl 1459.65041
[273] Southworth, B. S.; Sivas, A. A.; Rhebergen, S., On fixed-point, krylov, and \(2 \times 2\) block preconditioners for nonsymmetric problems, SIAM J. Matrix Anal. Appl., 41, 2, 871-900 (2020) · Zbl 1511.65027
[274] Brown, P. N.; Walker, H. F., GMRES on (nearly) singular systems, SIAM J. Matrix Anal. Appl., 18, 1, 37-51 (1997) · Zbl 0876.65019
[275] Ipsen, I. C.F.; Meyer, C. D., The idea behind Krylov methods, Am. Math. Mon., 105, 10, 889-899 (1998) · Zbl 0982.65034
[276] Sidi, A., DGMRES: A GMRES-type algorithm for Drazin-inverse solution of singular non-symmetric linear systems, Linear Algebra Appl., 335, 1, 189-204 (2001) · Zbl 0982.65043
[277] Calvetti, D.; Lewis, B.; Reichel, L., On the regularizing properties of the GMRES method, Numer. Math., 91, 4, 605-625 (2002) · Zbl 1022.65044
[278] Reichel, L.; Ye, Q., Breakdown-free GMRES for singular systems, SIAM J. Matrix Anal. Appl., 26, 4, 1001-1021 (2005) · Zbl 1086.65030
[279] Eldén, L.; Simoncini, V., Solving ill-posed linear systems with GMRES and a singular preconditioner, SIAM J. Matrix Anal. Appl., 33, 4, 1369-1394 (2012) · Zbl 1263.65033
[280] Greenbaum, A.; Kyanfar, F.; Salemi, A., On the convergence rate of DGMRES, Linear Algebra Appl., 552, 219-238 (2018) · Zbl 1392.65052
[281] Morikuni, K.; Rozložník, M., On GMRES for singular EP and GP systems, SIAM J. Matrix Anal. Appl., 39, 2, 1033-1048 (2018) · Zbl 1391.65070
[282] Gazzola, S.; Noschese, S.; Novati, P.; Reichel, L., Arnoldi decomposition, GMRES, and preconditioning for linear discrete ill-posed problems, Appl. Numer. Math., 142, 102-121 (2019) · Zbl 1417.65119
[283] Calvetti, D.; Lewis, B.; Reichel, L., GMRES-type methods for inconsistent systems, Linear Algebra Appl., 316, 1, 157-169 (2000) · Zbl 0963.65042
[284] Calvetti, D.; Lewis, B.; Reichel, L., On the choice of subspace for iterative methods for linear discrete ill-posed problems, Int. J. Appl. Math. Comput. Sci., 11, 5, 1069-1092 (2001) · Zbl 0994.65043
[285] Baglama, J.; Reichel, L., Augmented GMRES-type methods, Numer. Linear Algebra Appl., 14, 4, 337-350 (2007) · Zbl 1199.65096
[286] Bellalij, M.; Reichel, L.; Sadok, H., Some properties of range restricted GMRES methods, J. Comput. Appl. Math., 290, 310-318 (2015) · Zbl 1321.65046
[287] Wigton, L.; Yu, N.; Young, D., GMRES acceleration of computational fluid dynamics codes, Proceedings of the 7th Computational Physics Conference, 67-74 (1985), AIAA: AIAA Cincinnati, OH, USA
[288] Brown, P. N.; Hindmarsh, A. C., Reduced storage matrix methods in stiff ODE systems, Appl. Math. Comput., 31, 40-91 (1989) · Zbl 0677.65074
[289] Ohtsuka, T., A continuation/GMRES method for fast computation of nonlinear receding horizon control, Automatica, 40, 4, 563-574 (2004) · Zbl 1168.93340
[290] Liesen, J.; Strakoš, Z., GMRES convergence analysis for a convection-diffusion model problem, SIAM J. Sci. Comput., 26, 6, 1989-2009 (2005) · Zbl 1121.65314
[291] Lemieux, J.-F.; Tremblay, B.; Thomas, S.; Sedláček, J.; Mysak, L. A., Using the preconditioned Generalized Minimum RESidual (GMRES) method to solve the sea-ice momentum equation, J. Geophys. Res.-Oceans, 113, C10, C10004 (2008)
[292] Martinsson, P.-G.; Tropp, J. A., Randomized numerical linear algebra: foundations and algorithms, Acta Numer., 29, 403-572 (2020) · Zbl 07674565
[293] Balabanov, O.; Grigori, L., Randomized Gram-Schmidt process with application to GMRES, SIAM J. Sci. Comput., 44, 3, A1450-A1474 (2022) · Zbl 1492.65096
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.