×

Strata of vector spaces of forms in \({R = \mathsf k[x, y]}\), and of rational curves in \({\mathbb{P}^k}\). (English) Zbl 1317.14026

The author considers the polynomial ring \(R=K[x,y]\) over an infinite field \(K\), the subspaces \(R_j\) of degree-\(j\) homogeneous polynomials and the Grassmannians \(\mathrm{Grass}(R_j,d)\) parametrizing the vector spaces \(V \subset R_j\) having dimension \(d\) and then the rational curves \(\phi _V : \mathbb P ^1 \rightarrow \mathbb P ^{d-1}\) of degree \(j\). The restricted tangent bundle \(T_V = \phi _V ^* ( T_{\mathbb P ^{d-1}})\) on \(\mathbb P^1\) has a decomposition \(T_V= \bigoplus _{i=1}^{d-1} \mathcal O (k_i)\). By using the Euler exact sequence on \(\mathbb P ^{d-1}\) and the minimal free resolution of \((V) \subset R\), one can see that knowing the splitting type \(k_1, \ldots , k_{d-1}\) of the restricted tangent bundle \(T_V\) is equivalent to knowing the Betti numbers of \((V) \subset R\) or equivalently to knowing the column degrees of the \(d \times (d-1)\) Hilbert-Burch relation matrix among the generators of \(V\). That is also equivalent to knowing the Hilbert function of the algebra \(R/(V)\). A purpose of this paper is to recall, illustrate and extend some of the properties of the stratification of \(\mathrm{Grass}(R_j,d)\) by the Hilbert functions that the author studied in [Mem. Am. Math. Soc. 188, 112 p. (1977; Zbl 0355.14001)] and [J. Algebra 272, No. 2, 530–580 (2004; Zbl 1119.13015)]. A finer stratification determined by singularities of the rational curves is considered by D. Cox, A. Kustin, C. Polini and B. Ulrich in [Mem. Am. Math. Soc. 1045, v-ix, 116 p. (2013; Zbl 1305.14014)], the methods illustrated by the author would be extend to this stratification and the author poses some open questions. A description of the strata defined by the splitting type of the restricted tangent bundle of rational curves in \(\mathbb P^n\) can be found in [L. Ramella, C. R. Acad. Sci., Paris, Sér. I 311, No. 3, 181–184 (1990; Zbl 0721.14014)]. Furthermore the author generalizes results of D. A. Cox et al. [Comput. Aided Geom. Des. 15, No. 8, 803–827 (1998; Zbl 0908.68174)] and C. D’Andrea [Commun. Algebra 32, No. 1, 159–165 (2004; Zbl 1058.14070)] concerning the dimension and closure of \(\mu\) families of parametrized rational curves from planar to higher dimensional embeddings.

MSC:

14D20 Algebraic moduli problems, moduli of vector bundles
13D40 Hilbert-Samuel and Hilbert-Kunz functions; Poincaré series
13E10 Commutative Artinian rings and modules, finite-dimensional algebras
14H60 Vector bundles on curves and their moduli

References:

[1] M.-G. Ascenzi. The restricted tangent bundle of a rational curve on a quadric in ℙ3. Proc. Amer. Math. Soc., 98(4) (1986), 561-566. · Zbl 0616.14027
[2] M.-G. Ascenzi. The restricted tangent bundle of a rational curve in ℙ2. Comm. Alg., 16 (1988), 2193-2208. · Zbl 0675.14010 · doi:10.1080/00927878808823687
[3] E. Ballico and L. Ramella. The restricted tangent bundle of smooth curves in Grassmanians and curves in flag varieties. Rocky Mountain J. Math., 30(4) (2000), 1207-1227. · Zbl 0996.14014 · doi:10.1216/rmjm/1021477347
[4] R. Basili, A. Iarrobino and L. Khatami. Commuting nilpotent matrices and Artinian Algebras. J. Commutative Algebra (2), #3 (2010) 295-325. · Zbl 1237.15013 · doi:10.1216/JCA-2010-2-3-295
[5] A. Bernardi. Normal bundle of rational curves and Waring decomposition, ArXiv 1203.4955, (2012).
[6] A. Bernardi. Apolar ideal and normal bundle of rational curves, ArXiv 1203.4972, (2012).
[7] Clemens, H., On rational curves in n-space with given normal bundle, 137-144 (2001), Providence, RI · Zbl 0993.14011 · doi:10.1090/conm/276/04516
[8] D. Cox, A. Kustin, C. Polini and B. Ulrich. A study of singularities on rational curves via syzygies. MemoirsAMS 222 (2013),Amer. Math. Soc., Providence, RI. ArXiv 1102.5072. · Zbl 1305.14014
[9] D. Cox, T. Sederberg and F. Chen. The moving line ideal basis of planar rational curves. Comput. Aided Geom. Design, 15(8) (1998), 803-827. · Zbl 0908.68174 · doi:10.1016/S0167-8396(98)00014-4
[10] C. D’Andrea. On the structure of mu-classes. Communications in Algebra, 32 (2004), 159-165. · Zbl 1058.14070 · doi:10.1081/AGB-120027858
[11] D. Eisenbud and A. Van de Ven. On the normal bundle of smooth rational space curves. Math. Ann., 256 (1981), 453-463. · Zbl 0443.14015 · doi:10.1007/BF01450541
[12] D. Eisenbud and A. Van de Ven. On the variety of smooth rational space curves with given degree and normal bundle. Invent. Math., 67(1) (1982), 89-100. · Zbl 0492.14016 · doi:10.1007/BF01393373
[13] F. Ghione. Fibres Projettivi. Preprint #11 (1985), Il Univ. degli Studi di Roma.
[14] F. Ghione and G. Sacchiero. Normal bundles of rational curves in ℙ3. Manuscripta Math., 33 (1980), 111-126. · Zbl 0496.14021 · doi:10.1007/BF01316971
[15] F. Ghione, A. Iarrobino and G. Sacchiero. Restricted tangent bundles of rational curves in ℙr, preprint, 1988, revised 2002, 16 p (still in progress).
[16] A. Gimigliano, B. Harbourne and M. Ida. On plane rational curves and the splitting of the tangent bundle, ArXiv 1102.1093 (2011), to appear, Annali della Scuola Normale Superiore di Pisa, Classe di Scienze, DOI 10.2422/2036-2145.201102_001. · Zbl 1434.14004
[17] G. Harder and M. Narasimham. On the cohomology groups of moduli spaces. Math. Ann., 212 (1975), 215-248. · Zbl 0324.14006 · doi:10.1007/BF01357141
[18] T. Harima and J. Watanabe. The commutator algebra of a nilpotent matrix and an applicationto the theory of commutative Artinian algebras. J.Algebra, 319(6) (2008), 2545-2570. · Zbl 1135.13010 · doi:10.1016/j.jalgebra.2007.09.011
[19] G. Hein. Curves in ℙ3with good restriction of the tangent bundle. Rocky Mountain J. Math., 30(1) (2000), 217-235. · Zbl 0983.14011 · doi:10.1216/rmjm/1022008987
[20] Hein, G.; Kurke, H., Restricted tangent bundle on space curves (1996) · Zbl 0859.14011
[21] A. Iarrobino. Punctual Hilbert schemes. A.M.S. Memoir, Vol. 10, #188, (1978). · Zbl 0616.14027
[22] A. Iarrobino. Ancestor ideals of a vector space of forms. J. Algebra, 272 (2004), 530-580. · Zbl 1119.13015 · doi:10.1016/S0021-8693(03)00425-3
[23] H. Kaji. On the normal bundles of rational space curves. Math. Ann., 273 (1985), 163-176. · Zbl 0589.14032 · doi:10.1007/BF01455921
[24] A. Kustin, C. Polini and B. Ulrich. The bi-graded structure of Symmetric Algebras with applications to Rees rings, preprint (2013) ArXiv 1301.7106.
[25] F.H.S. Macaulay. On a method for dealing with the intersection of two plane curves. Trans. A.M.S., 5 (1904), 385-400. · JFM 35.0587.01 · doi:10.1090/S0002-9947-1904-1500679-1
[26] R. Piene and G. Sacchiero. Duality for rational normal scrolls. Comm. in Algebra, 12(9) (1984), 1041-1066. · Zbl 0539.14027 · doi:10.1080/00927878408823038
[27] C. Polini. Rees algebras and singularities, Talk at ALGA, 12-th Brazilian Meeting on Algebraic Geometry and Commutative Algebra at I.M.P.A., Rio de Janeiro, August, 2012.Video at http://video.impa.br/index.php?page=12thalga-meeting.
[28] L. Ramella. La stratification du schéma de Hilbert des courbes rationelles de ℙnpar le fibré tangent restreint. C.R. Acad. Sci. Paris Sér. I Math., 311(3) (1990), 181-184. · Zbl 0721.14014
[29] Ramella, L., Sur les schémas définissant les courbes rationnelles lisses de ℙ3ayant fibré normal et fibré tangent restreint fixés (1993) · Zbl 0813.14020
[30] L. Ramella. Strata of smooth space curves having unstable normal bundle. Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8), 2(3) (1999), 499-516. · Zbl 0963.14014
[31] Z. Ran. The degree of the divisor of jumping rational curves. Q.J. Math., 52(3) (2001), 367-383. · Zbl 1076.14530 · doi:10.1093/qjmath/52.3.367
[32] Z. Ran. Normal bundles of rational curves in projective spaces. Asian J.Math., 11(4) (2007), 567-608. · Zbl 1163.14029 · doi:10.4310/AJM.2007.v11.n4.a3
[33] Shi, X.; Chen, F., Computing the singularities of rational space curves (2010) · Zbl 1321.14043
[34] H. Wang, X. Jia and R. Goldman. Axial moving planes and singularities of rational space curves. Comput. Aided Geom. Design, 26 (2009), 300-316. · Zbl 1205.14077 · doi:10.1016/j.cagd.2008.09.002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.