×

Maximal rank for \(T_{\mathbb{P}^n}\). (Rang maximal pour \(T_{\mathbb{P}^n}\).) (French) Zbl 0904.14028

Let \(k\) be an algebraically closed field, let \(S=k[x_0,\dots,x_n]\) and let \(Z\) be a general, non-degenerate set of \(s\) points in \(\mathbb{P}^n=\mathbb{P}_k^n\). Consider the minimal free resolution of the homogeneous ideal \(I_Z\) of \(Z\): \(0\to L_{n-1}\to\cdots\to L_0\to I_Z\to 0\). The generality of \(Z\) implies that \[ L_p=S(-d-p-1)^{a_p}\oplus S(-d-p)^{b_p}, \] \(a_p=h^1(\Omega^{p+1}(d+p+1)\otimes{\mathcal I}_Z)\) and \(b_p = h^0(\Omega^p(d+p)\otimes {\mathcal I}_Z)\), where \(d\) is the unique positive integer satisfying \({d+n-1\choose n}\leq s<{d+n\choose n}\). The “minimal resolution conjecture” (MRC) of A. Lorenzini [J.Algebra 156, No. 1, 5-35 (1993; Zbl 0811.13008)] states, briefly, that for \(Z\) sufficiently general, and for all \(p\geq 1\), we have \(a_{p-1} \cdot b_p = 0\). This conjecture has been verified in \(\mathbb{P}^2\) and \(\mathbb{P}^3\) in a number of papers. It has been proven false for some values of \(s\) beginning in \(\mathbb{P}^6\), first computationally by Schreyer and then proven false rigorously, and put in a more general framework by D. Eisenbud and Popescu [“Gale duality and free resolutions of ideals of points” (preprint)]. On the other hand, A. Hirschowitz and C. Simpson [Invent. Math. 126, No. 3, 467-503 (1996; Zbl 0877.14035)] have shown that for all \(n\), and for \(s\) large enough with respect to \(n\), a sufficiently general set \(Z\) of \(s\) points has the resolution predicted by the MRC.
Still, the problems with the MRC seem to come in the middle of the resolution, and one can try to prove it for either end of the resolution. In particular, the predicted rank of \(L_{n-1}\) is called the “Cohen-Macaulay type conjecture”. A proof was given by Ngo Viet Trung and G. Valla [J. Algebra 125, No. 1, 110-119 (1989; Zbl 0701.14042)], but a gap was pointed out by C. Walter. The paper under review proves this latter conjecture. The MRC is really a maximal rank statement, and this is reflected in the fact that the main result of this paper is the following:
Let \(Z\) be as above, and let \(T_{\mathbb{P}^n}\) be the tangent bundle of \(\mathbb{P}^n\). For every integer \(\ell\), the restriction map \(H^0(\mathbb{P}^n,T_{\mathbb{P}^n}(\ell)) \to H^0(Z,T_{{\mathbb{P}}^n} (\ell)_{| Z})\) has maximal rank.
The proof uses the so-called “méthode d’Horace” in different formulations, and the connection to the MRC is made.

MSC:

14M05 Varieties defined by ring conditions (factorial, Cohen-Macaulay, seminormal)
14F05 Sheaves, derived categories of sheaves, etc. (MSC2010)
14F45 Topological properties in algebraic geometry
13D02 Syzygies, resolutions, complexes and commutative rings

References:

[1] E. Ballico:Generators for the Homogeneous Ideal of s General points in P 3, J. Algebra,106 (1987) 46–52. · Zbl 0616.14043 · doi:10.1016/0021-8693(87)90020-2
[2] E. Ballico, A.V. Geramita:The minimal free resolution of s general points in P 3, Can. Math. Soc. Conf. Proc.6 (1986) 1–10. · Zbl 0621.14003
[3] A.V. Geramita, D. Gregory, L. Roberts:Monomial ideals and points in projective space, J. Pure Appl. Algebra40 (1986), 33–62. · Zbl 0586.13015 · doi:10.1016/0022-4049(86)90029-0
[4] A.V. Geramita, F. Orecchia:On the Cohen-Macaulay type of s lines in A n+1, J. Algebra70 (1981), 116–140. · Zbl 0464.14007 · doi:10.1016/0021-8693(81)90247-7
[5] A.V. Geramita, F. Orecchia:Minimally generating ideals defining certain tangent cones, J. Algebra78 (1982), 36–57. · Zbl 0502.14001 · doi:10.1016/0021-8693(82)90101-6
[6] A.V. Geramita, P Maroscia:The ideal of forms vanishing at a finite set of points in P n , J. Algebra90 (1984), 528–555. · Zbl 0547.14001 · doi:10.1016/0021-8693(84)90188-1
[7] R. Rartshorne, A. Hirschowitz:Droites en position générale dans l’espace projectif, Algebraic Geometry, Proc. La Rabida 1981, LNM Math961, Springer-Verlag.
[8] A. Hirschowitz, C. Simpson:La résolution minimale de l’arrangement d’un grand nombre de points dans P n , Invent. Math., à paraître.
[9] M. Idà:On the homogeneous ideal of lines in general position in P 3, J. für reine und angew. Math403 (1990), 67–153. · Zbl 0681.14032 · doi:10.1515/crll.1990.403.67
[10] A. Lorenzini:The Minimal Resolution Conjecture, J. Algebra156 (1993), 5–35. · Zbl 0811.13008 · doi:10.1006/jabr.1993.1060
[11] F. Lauze:Sur la résolution minimale des idéaux d’arrangement de points génériques dans les espaces projectifs, thèse, Nice 1994.
[12] D. Mumford:Lectures on Curves on an Algebraic Surface, Princeton University Press, N.J., 1966. · Zbl 0187.42701
[13] O.F. Rahavandrainy:Résolution des fibrés instantons généraux, thèse Nice 1991.
[14] L. Roberts:A conjecture of Cohen-Macaulay type, C. R. Math. Rep. Acad. Sci. Canada3 (1981), 43–48. · Zbl 0451.14017
[15] N.V. Trung, G. Valla:The Cohen-Macaulay type of points in generic position, J. Algebra125 (1989), 110–119. · Zbl 0701.14042 · doi:10.1016/0021-8693(89)90295-0
[16] W. Walter:The minimal free resolution of the homogeneous ideal of s general points in P 4, Math. Zeit.219 (1995) 231–234. · Zbl 0826.14037 · doi:10.1007/BF02572362
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.