×

Stable Ulrich bundles on Fano threefolds with Picard number 2. (English) Zbl 1442.14134

The goal of this paper is to study the existence of Ulrich bundles on the imprimitive Fano 3-folds obtained blowing-up one of the following varieties along a smooth irreducible curve: the projective space \(\mathbb{P}^3\), the smooth quadric \(Q\subset \mathbb{P}^4\), a smooth cubic \(V_3\subset \mathbb{P}^4\) or the complete intersection of two quadrics \(V_4 \subset \mathbb{P}^5\).
Recall that a vector bundle \(\mathcal{F}\) on a \(n\)-dimensional projective variety \(X \subset \mathbb{P}^N\) is called Ulrich if \[ H^i(X,\mathcal{F}(-t))=0 \mbox{ for any } i \geq0 \mbox{ and } 1 \leq t \leq n. \] In [D. Eisenbud and F.-O. Schreyer, J. Am. Math. Soc. 16, No. 3, 537–575, appendix by J. Weyman 576–579 (2003; Zbl 1069.14019)], it is conjectured that every variety admits an Ulrich bundle and, once the existence is proven, it is pointed out, as an interesting problem, to determine its minimal rank.
The main result of this paper states that, among the varieties considered, the only ones admitting a rank 1 Ulrich bundle are given by blowing up \(\mathbb{P}^3\) along a curve of genus 3 and degree 6 (see Section 2). Focusing on these varieties, polarized by \(H\), the author shows that \(X\) admits two classes of rank 1 Ulrich bundles (see Section 3). Finally, he proves the existence of stable rank 2 Ulrich bundles with \(c_1 = 3H\) (see Section 4).

MSC:

14J60 Vector bundles on surfaces and higher-dimensional varieties, and their moduli

Citations:

Zbl 1069.14019

Software:

Macaulay2

References:

[1] Beauville, Arnaud, Determinantal hypersurfaces, Mich. Math. J., 48, 39-64 (2000), Dedicated to William Fulton on the occasion of his 60th birthday. MR1786479 (2002b:14060) · Zbl 1076.14534
[2] Beauville, Arnaud, Ulrich bundles on abelian surfaces (2015), arXiv preprint · Zbl 1375.14148
[3] Bertram, Aaron; Ein, Lawrence; Lazarsfeld, Robert, Vanishing theorems, a theorem of Severi, and the equations defining projective varieties, J. Am. Math. Soc., 4, 3, 587-602 (1991), MR1092845 (92g:14014) · Zbl 0762.14012
[4] Graf v. Bothmer, H.-Chr.; Geiss, Florian; Schreyer, Frank-Olaf, RandomSpaceCurves.m2, available at
[5] Casanellas, Marta; Hartshorne, Robin; Geiss, Florian; Schreyer, Frank-Olaf, Stable Ulrich bundles, Int. J. Math., 23, 8, Article 1250083 pp. (2012), 50, MR2949221 · Zbl 1255.14034
[6] Coskun, Emre; Kulkarni, Rajesh S.; Mustopa, Yusuf, On Representations of Clifford Algebras of Ternary Cubic Forms, New Trends in Noncommutative Algebra, Contemp. Math., vol. 562, 91-99 (2012), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI, MR2905555 · Zbl 1271.14057
[7] Coskun, Emre; Kulkarni, Rajesh S.; Mustopa, Yusuf, The geometry of Ulrich bundles on del Pezzo surfaces, J. Algebra, 375, 280-301 (2013), MR2998957 · Zbl 1284.14053
[8] Ein, Lawrence, Hilbert scheme of smooth space curves, Ann. Sci. Éc. Norm. Supér., 19, 4, 469-478 (1986), MR875083 (88c:14009) · Zbl 0606.14003
[9] Eisenbud, David; Schreyer, Frank-Olaf, Betti numbers of graded modules and cohomology of vector bundles, J. Am. Math. Soc., 22, 3, 859-888 (2009), MR2505303 · Zbl 1213.13032
[10] Eisenbud, David; Schreyer, Frank-Olaf, Boij-Söderberg theory, (Combinatorial Aspects of Commutative Algebra and Algebraic Geometry, Abel Symp., vol. 6 (2011), Springer: Springer Berlin), 35-48, MR2810424 · Zbl 1248.14058
[11] Eisenbud, David; Schreyer, Frank-Olaf; Weyman, Jerzy, Resultants and Chow forms via exterior syzygies, J. Am. Math. Soc., 16, 3, 537-579 (2003), MR1969204 (2004j:14067) · Zbl 1069.14019
[12] Ellia, Philippe; Idà, Monica, Some connections between equations and geometric properties of curves in \(P^3\), (Geometry and Complex Variables. Geometry and Complex Variables, Bologna, 1988/1990. Geometry and Complex Variables. Geometry and Complex Variables, Bologna, 1988/1990, Lect. Notes Pure Appl. Math., vol. 132 (1991), Dekker: Dekker New York), 177-188, MR1151641 · Zbl 0794.14013
[13] Farkas, Gavril; Mustatţǎ, Mircea; Popa, Mihnea, Divisors on \(M_{g, g + 1}\) and the minimal resolution conjecture for points on canonical curves, Ann. Sci. Éc. Norm. Supér., 36, 4, 553-581 (2003), (English, with English and French sum maries). MR2013926 (2005b:14051) · Zbl 1063.14031
[14] Fulton, William, Intersection Theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), vol. 2 (1984), Springer-Verlag: Springer-Verlag Berlin, MR732620 (85k:14004) · Zbl 0541.14005
[15] Casnati, Gianfranco; Faenzi, Daniele; Malaspina, Francesco, Rank two aCM bundles on the del Pezzo threefold with Picard number 3, J. Algebra, 429, 413-446 (2015), MR3320630 · Zbl 1330.14072
[16] Grayson, Daniel R.; Stillman, Michael E., Macaulay2, a software system for research in algebraic geometry, available at
[17] Hartshorne, Robin, Algebraic Geometry, Graduate Texts in Mathematics, vol. 52 (1977), Springer-Verlag: Springer-Verlag New York, Heidelberg, MR0463157 (57 #3116) · Zbl 0367.14001
[18] Hartshorne, Robin, Deformation Theory, Graduate Texts in Mathematics, vol. 257 (2010), Springer: Springer New York, MR2583634 (2011c:14023) · Zbl 1186.14004
[19] Herzog, J.; Ulrich, B.; Backelin, J., Linear maximal Cohen-Macaulay modules over strict complete intersections, J. Pure Appl. Algebra, 71, 2-3, 187-202 (1991), MR1117634 · Zbl 0734.13007
[20] Hironaka, Heisuke, Resolution of singularities of an algebraic variety over a field of characteristic zero. I, II, Ann. of Math. (2). Ann. of Math. (2), Ann. of Math. (2), 79, 205-326 (1964), MR0199184 · Zbl 0122.38603
[21] Huybrechts, Daniel; Lehn, Manfred, The Geometry of Moduli Spaces of Sheaves, Cambridge Mathematical Library (2010), Cambridge University Press: Cambridge University Press Cambridge, MR2665168 (2011e:14017) · Zbl 1206.14027
[22] Iskovskikhand, V. A.; Prokhorov, Yu. G., Fano varieties, (Algebraic Geometry, V. Algebraic Geometry, V, Encyclopaedia Math. Sci., vol. 47 (1999), Springer: Springer Berlin), 1-247, MR1668579 (2000b:14051b) · Zbl 0912.14013
[23] Lazarsfeld, Robert, Positivity in algebraic geometry. I, (Classical Setting: Line Bundles and Linear Series. Classical Setting: Line Bundles and Linear Series, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, vol. 48 (2004), Springer-Verlag: Springer-Verlag Berlin), MR2095471 · Zbl 1066.14021
[24] Lorenzini, Anna, The minimal resolution conjecture, J. Algebra, 156, 1, 5-35 (1993), MR1213782 (94g:13005) · Zbl 0811.13008
[25] Mori, Shigefumi; Mukai, Shigeru, Classification of Fano 3-folds with \(B_2 \geq 2, I\), (Algebraic and Topological Theories. Algebraic and Topological Theories, Kinosaki, 1984 (1986), Kinokuniya: Kinokuniya Tokyo), 496-545, MR1102273 · Zbl 0800.14021
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.