×

The Rees algebra of parametric curves via liftings. (English) Zbl 1423.13040

[Note: Some diagrams below cannot be displayed correctly in the web version. Please use the PDF version for correct display.]
Let \(\Bbbk\) be a field, \(R\) be the polynomial ring \(\Bbbk[T_0,T_1]\), and \(K\) be a height two ideal of \(R\) which is generated by the three homogeneous forms \(f_0,f_1,f_2\) of degree \(d\). The paper is about the defining ideal \(\mathfrak K\) of the Rees ring of \(K\). The authors would like to know a minimal generating set for \(\mathfrak K\), or the bi-degrees of a minimal generating set for \(\mathfrak K\), or all of the bi-homogeneous Betti numbers of \(\mathfrak K\). The questions are very hard and very important. Indeed, information about the singularities of the rational plane curve parameterized by \[ [f_0:f_1:f_2]:\mathbb P^1 \to \mathbb P^2 \] are encoded in the answers to the above questions. For example, the Rees algebra of \(K\) is the bi-homogeneous coordinate ring of the graph of the rational map which is given above.
Let \(Z_0,Z_1,Z_2\) and \(s\) be indeterminates. The ideal of interest, \(\mathfrak K\), is the kernel of the \(R\)-algebra homomorphism \[ \psi:R[Z_0,Z_1,Z_2]\to R[s], \] with \(\psi(Z_i)=f_is\). Everything in sight is bi-homogeneous where the bi-degrees are given by \begin{align*} \deg T_i&=(1,0), &\deg Z_i&=(0,1), &\deg s&=(-d,1),\\ \deg X&=(-\mu_1,1),& \deg Y&=(-\mu_2,1),&\deg X_i&=(0,1),\\ \deg (Y_i)&=(0,1),& \deg\alpha&=(d-\mu_1,0),\text{ and}& \deg \beta&=(d-\mu_2,0). \end{align*} The symbols \(X\), \(Y\), \(X_i\), and \(Y_i\) all represent indeterminates (that are defined below) and the symbols \(\alpha\) and \(\beta\) are homogeneous elements of \(R\) (that are also defined below).
More information about \(K\) must be identified before one can say anything about \(\mathfrak K\). Let \[ 0\to \begin{matrix} R(-d-d_1)\\ \oplus\\ R(-d-d_2)\end{matrix} \xrightarrow{\begin{bmatrix} p_0&q_0\\ p_1&q_1\\ p_2&q_2\end{bmatrix}} R(-d)^3\xrightarrow{\begin{bmatrix} f_0& f_1& f_2\end{bmatrix}} R \] be a minimal homogeneous resolution of \(R/K\). The Hilbert-Burch theorem guarantees that \(d_1+d_2=d\). We choose \(d_1\le d_2\). One argues that \((p_0,p_1,p_2)\) also is an ideal of height two in \(R\). Let \[ 0\to \begin{matrix} R(-d-\mu_1)\\ \oplus\\ R(-d-\mu_2)\end{matrix} \xrightarrow{\begin{bmatrix} A_0&B_0\\A_1&B_1\\A_2&B_2\end{bmatrix}} R(-d_1)^3\xrightarrow{\begin{bmatrix} p_0&p_1&p_2\end{bmatrix}} R \] be a minimal homogeneous resolution. Again, \(\mu_1+\mu_2=d_1\).
The vector \(\begin{bmatrix} f_0\\ f_1\\ f_2\end{bmatrix}\) is a relation on \(\begin{bmatrix} p_0& p_1& p_2\end{bmatrix}\); so there are homogeneous elements \(\alpha\) and \(\beta\) in \(R\) with \[ \begin{bmatrix} f_0\\ f_1\\ f_2\end{bmatrix} =\begin{bmatrix} A_0& B_0\\ A_1& B_1\\ A_2& B_2\end{bmatrix} \begin{bmatrix} \alpha\\ \beta\end{bmatrix}. \] Let \(A\) and \(B\) be matrices of constants with \[ \begin{bmatrix} A_0\\ A_1\\ A_2\end{bmatrix} =A\begin{bmatrix} T_0^{\mu_1}T_1^0\\ \vdots \\T_0^0T_1^{\mu_1}\end{bmatrix} \quad \text{and}\quad \begin{bmatrix} B_0\\ B_1\\ B_2\end{bmatrix} =B\begin{bmatrix} T_0^{\mu_2}T_1^0\\ \vdots \\ T_0^0T_1^{\mu_2}\end{bmatrix}. \] Let \(X_0,\dots,X_{\mu_1}\), \(Y_0,\dots,Y_{\mu_2}\), \(X\), and \(Y\) be indeterminates.
The main idea in the present paper is the observation that there is a commutative diagram of \(R\)-algebra homomorphisms of the form: \[ \begin{tikzcd} &R[\{X_i\},\{Y_i\}]\ar[d, "{\Phi'}"]\ar[rdd, "{\Phi}"]\\ R[Z_0,Z_1,Z_2]\ar[r, "{\Omega}"]\ar[ur, "{\Gamma}"]\ar[rrd, "{\psi}"] &R[X,Y]\ar[dr, "{\phi}"]\\ &&R[s], \end{tikzcd} \] where \[ \begin{bmatrix} \Gamma(Z_0)\\ \Gamma(Z_1) \\ \Gamma(Z_2)\end{bmatrix} = A\begin{bmatrix} X_0\\ \vdots\\ X_{\mu_1}\end{bmatrix} +B\begin{bmatrix} Y_0\\ \vdots\\ Y_{\mu_2}\end{bmatrix},\quad \quad\begin{bmatrix} \Omega(Z_0)\\ \Omega(Z_1) \\ \Omega(Z_2)\end{bmatrix} = \begin{bmatrix} A_0& B_0\\ A_1& B_1\\ A_2& B_2\end{bmatrix} \begin{bmatrix} X\\ Y\end{bmatrix}, \] \begin{align*}\Phi(X_i)&=\alpha T_0^{\mu_1-i}T_1^is,& \Phi(Y_i)&=\beta T_0^{\mu_2-i}T_1^is,&\phi(X)&=\alpha s,\\ \phi(Y)&=\beta s,&\Phi'(X_i)&=T_0^{\mu_1-i}T_1^iX,\text{ and}&\Phi'(Y_i)&=T_0^{\mu_2-i}T_1^iY. \end{align*} The goal is to calculate information about \(\ker \psi\). The kernel of \(\phi\) is well understood.

MSC:

13A30 Associated graded rings of ideals (Rees ring, form ring), analytic spread and related topics
14H50 Plane and space curves
13D02 Syzygies, resolutions, complexes and commutative rings

Software:

Macaulay2

References:

[1] Bernardi, A.; Gimigliano, A.; Idà, M., On parameterizations of plane rational curves and their syzygies, Math. Nachr., 289, 5-6, 537-545 (2016) · Zbl 1342.14064
[2] Busé, L., On the equations of the moving curve ideal of a rational algebraic plane curve, J. Algebra, 321, 8, 2317-2344 (2009) · Zbl 1168.14027
[3] Cortadellas Benítez, T.; D’Andrea, C., Rational plane curves parameterizable by conics, J. Algebra, 373, 453-480 (2013) · Zbl 1408.14106
[4] Cortadellas Benítez, T.; D’Andrea, C., Minimal generators of the defining ideal of the Rees algebra associated with a rational plane parametrization with \(\mu = 2\), Can. J. Math., 66, 1225-1249 (2014) · Zbl 1310.13007
[5] Cortadellas Benítez, T.; D’Andrea, C., The Rees algebra of a monomial plane parametrization, J. Symb. Comput., 70, 71-105 (2015) · Zbl 1327.13018
[6] Cox, D.; Goldman, R.; Zhang, M., On the validity of implicitization by moving quadrics of rational surfaces with no base points, J. Symb. Comput., 29, 3, 419-440 (2000) · Zbl 0959.68124
[7] Cox, D., The moving curve ideal and the Rees algebra, Theor. Comput. Sci., 392, 23-36 (2008) · Zbl 1170.13004
[8] Cox, D.; Hoffman, J. W.; Wang, H., Syzygies and the Rees algebra, J. Pure Appl. Algebra, 212, 1787-1796 (2008) · Zbl 1151.13012
[9] Cox, D.; Little, J.; Schenck, H., Toric Varieties (2011), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI · Zbl 1223.14001
[10] Cox, D.; Kustin, A.; Polini Claudia, C.; Ulrich, B., A study of singularities on rational curves via syzygies, Mem. Am. Math. Soc., 222, 1045 (2013) · Zbl 1305.14014
[11] Grayson, Daniel R.; Stillman, Michael E., Macaulay 2, a software system for research in algebraic geometry, available at
[12] Kustin, A.; Polini, C.; Ulrich, B., Rational normal scrolls and the defining equations of Rees algebras, J. Reine Angew. Math., 650, 23-65 (2011) · Zbl 1211.13005
[13] Kustin, A.; Polini, C.; Ulrich, B., The bi-graded structure of symmetric algebras with applications to Rees rings, J. Algebra, 469, 188-250 (2017) · Zbl 1357.13008
[14] Lin, K-N.; Polini, C., Rees algebras of truncations of complete intersections, J. Algebra, 410, 36-52 (2014) · Zbl 1304.13006
[15] Madsen, J., Equations of Rees algebras of ideals in two variables, preprint
[16] Sederberg, T.; Goldman, R.; Du, H., Implicitizing rational curves by the method of moving algebraic curves, Parametric Algebraic Curves and Applications. Parametric Algebraic Curves and Applications, Albuquerque, NM, 1995. Parametric Algebraic Curves and Applications. Parametric Algebraic Curves and Applications, Albuquerque, NM, 1995, J. Symb. Comput., 23, 2-3, 153-175 (1997) · Zbl 0872.68193
[17] Vasconcelos, W., Arithmetic of Blowup Algebras (1994), Cambridge Univ. Press: Cambridge Univ. Press Cambridge · Zbl 0813.13008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.