×

An in depth analysis, via resultants, of the singularities of a parametric curve. (English) Zbl 1439.14171

The knowledge of the singular locus of an algebraic curve is essential for a variety of algorithms. Given a defining polynomial \(p(x,y)\) for the curve, we simply have to determine the common zeros of \(p\) and its partial derivatives. The situation is more complicated if the curve is given by a rational parametrization; i.e., a pair of rational functions s.t. the curve is the Zariski closure of the image.
In this paper a so-called T-function is determined by means of a resultant computation on the parametrization. By factorizing this T-function one can obtain the singularities (ordinary or non-ordinary) together with their multiplicities.

MSC:

14Q05 Computational aspects of algebraic curves
65D18 Numerical aspects of computer graphics, image analysis, and computational geometry
14Q65 Geometric aspects of numerical algebraic geometry

Software:

CASA

References:

[1] Abhyankar, S. S., Algebraic Geometry for Scientists and Engineers, Math. Surveys Monogr., vol. 35 (1990), American Mathematical Society: American Mathematical Society Providence, RI · Zbl 0709.14001
[2] Bernardi, A.; Gimigliano, A.; Idà, M., Singularities of plane rational curves via projections, J. Symb. Comput., 86, 189-214 (2018) · Zbl 1390.14183
[3] Blasco, A.; Pérez-Díaz, S., Resultants and singularities of parametric curves (2017), See
[4] Blasco, A.; Pérez-Díaz, S., The limit point and the T-function, J. Symb. Comput. (2018), in press
[5] Bobenko, A. I.; Klein, C., Computational Approach to Riemann Surfaces, Lecture Notes in Mathematics, vol. 2013 (2011) · Zbl 1207.14002
[6] Brieskorn, E.; Knoerrer, H., Plane Algebraic Curves (1986), Birkhäuser Verlag Basel · Zbl 0588.14019
[7] Busé, L.; Thang, L. B., Matrix-based implicit representations of rational algebraic curves and applications, Comput. Aided Geom. Des., 27, 9, 681-699 (2010) · Zbl 1211.65020
[8] Busé, L.; D’Andrea, C., Singular factors of rational plane curves, J. Algebra, 357, 322-346 (2012) · Zbl 1261.14032
[9] Chen, F.; Wang, W.; Liu, Y., Computing singular points of plane rational curves, J. Symb. Comput., 43, 2, 92-117 (2008) · Zbl 1130.14039
[10] Emiris, I. Z.; Sottile, F.; Theobald, T., Nonlinear Computational Geometry, The IMA Volumes in Mathematics and Its Applications, vol. 151 (2010) · Zbl 1181.14003
[11] Farouki, R. T., Pythagorean-Hodograph Curves, Geometry and Computing (2008), Springer · Zbl 1144.51004
[12] Fulton, W., Algebraic Curves - An Introduction to Algebraic Geometry (1989), Addison-Wesley: Addison-Wesley Redwood City, CA · Zbl 0681.14011
[13] Gutierrez, J.; Rubio, R.; Yu, J.-T., Resultant for rational functions, Proc. Am. Math. Soc., 130, 8, 2237-2246 (2002) · Zbl 0997.14018
[14] Harris, J., Algebraic Geometry. A First Course (1995), Springer-Verlag
[15] Hoffmann, C., Geometric and Solid Modeling: An Introduction (1989), Morgan Kaufmann Publishers, Inc.: Morgan Kaufmann Publishers, Inc. California
[16] Hoffmann, C. M.; Sendra, J. R.; Winkler, F., Parametric algebraic curves and applications, J. Symb. Comput., 23 (1997) · Zbl 0869.00050
[17] Hoschek, J.; Lasser, D., Fundamentals of Computer Aided Geometric Design (1993), A.K. Peters Wellesley MA., Ltd. · Zbl 0788.68002
[18] Jia, X.; Goldman, R., Using Smith forms and \(μ\)-bases to compute all the singularities of rational planar curves, Comput. Aided Geom. Des., 29, 296-314 (2012) · Zbl 1298.65028
[19] Jüttler, B.; Piene, R., Geometric Modeling and Algebraic Geometry (2007), Springer Science and Business Media
[20] Park, H., Effective computation of singularities of parametric affine curves, J. Pure Appl. Algebra, 173, 49-58 (2002) · Zbl 1052.14072
[21] Pérez-Díaz, S., On the problem of proper reparametrization for rational curves and surfaces, Comput. Aided Geom. Des., 23, 4, 307-323 (2006) · Zbl 1102.65018
[22] Pérez-Díaz, S., Computation of the singularities of parametric plane curves, J. Symb. Comput., 42, 8, 835-857 (2007) · Zbl 1138.14036
[23] Pérez-Díaz, S.; Sendra, J. R., A univariate resultant-based implicitization algorithm for surfaces, J. Symb. Comput., 43, 2, 118-139 (2008) · Zbl 1154.14043
[24] Pérez-Díaz, S.; Sendra, J. R.; Villarino, C., Computing the Singularities of Rational Surfaces, Math. Comput., 84, 294, 1991-2021 (2015) · Zbl 1318.14056
[25] Rubio, R.; Serradilla, J. M.; Vélez, M. P., Detecting real singularities of a space curve from a real rational parametrization, J. Symb. Comput., 44, 5, 490-498 (2009) · Zbl 1159.14036
[26] Sendra, J. R.; Winkler, F.; Pérez-Díaz, S., Rational Algebraic Curves: A Computer Algebra Approach, Algorithms and Computation in Mathematics, vol. 22 (2007), Springer Verlag
[27] Shafarevich, I. R., Basic Algebraic Geometry Schemes; 1 Varieties in Projective Space, vol. 1 (1994), Springer-Verlag: Springer-Verlag Berlin, New York · Zbl 0797.14001
[28] Shi, X.; Jia, X.; Goldman, R., Using a bihomogeneous resultant to find the singularities of rational space curves, J. Symb. Comput., 53, 1-25 (2013) · Zbl 1268.14053
[29] Song, N.; Chen, F.; Goldman, R., Axial moving lines and singularities of rational planar curves, Comput. Aided Geom. Des., 24, 4, 200-209 (2007) · Zbl 1171.65352
[30] Van den Essen, A.; Yu, J.-T., The D-resultant, singularities and the degree of unfaithfulness, Proc. Am. Math. Soc., 125, 3, 689-695 (1997) · Zbl 0860.13004
[31] Walker, R. J., Algebraic Curves (1950), Princeton University Press · Zbl 0039.37701
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.