×

Normal bundle of rational curves and Waring decomposition. (English) Zbl 1318.14030

The present paper is devoted to a classical subject in the theory of algebraic curves – a classification of rational curves \(C \subset \mathbb{P}^{m}\) of degree \(n \geq m\) by the splitting type of their normal bundles \(N_{C;\mathbb{P}^{m}}\) and restricted tangent bundles \(T\mathbb{P}^{m}|_{C}\).
In the note the author consider the projective situation (in order to see these degree \(n\) curves as projections of rational normal curves \(C_{n} \subset \mathbb{P}^{n}\) from \(L = \mathbb{P}^{k-1}\)) under the additional assumption that \(C\) has at worst ordinary singularities, which brings about that by \(N_{C;\mathbb{P}^{m}}\) and \(T\mathbb{P}^{m}|_{C}\) one means \(p^{*}(N_{C;\mathbb{P}^{m}})\) and \(p^{*}(T\mathbb{P}^{m}|_{C})\) respectively, where \(p: \mathbb{P}^{1} \rightarrow C\) is the composition \(p = p_{L} \circ v_{n}\) of the \(n\)-th Veronese and the projection from \(L\).
For every \(n \in \mathbb{N}\) one defines the number \(\rho_{r}^{n,k}\) which is either equal to \(n-3k+r-1\) when \(3k < n-1, r \leq 2k-1\) or \(r\) when \(3k \geq n-1, 1 \leq r \leq n-k.\)
Now we can recall some main results of the paper.
Theorem.
If \(\rho_{r}^{n,k} \leq (n-k+1)/3\), then the following conditions are equivalent:
i)
the curve \(C = \pi_{L}(C_{n}) \subset \mathbb{P}^{n-k}\) projected from \(L\) has the splitting \[ N_{\pi_{L}(C_{n});\mathbb{P}^{n-k}} \cong \mathcal{O}_{\mathbb{P}^{1}}(n+2)^{\rho_{r}^{n,k}} \oplus \mathcal{F}, \] where \(\text{deg}(\mathcal{F}^{\vee}(n+2)) = -2k\) and \(\mathcal{F} \cong \bigoplus_{i}^{n-1-\rho_{r}^{n,k}-k}\mathcal{O}_{\mathbb{P}^{1}}(l_{i})\) with \(l_{i} \geq n+3\),
ii)
the center of projection \(L\) is contained in the base locus of a linear series \(\Phi\) generated by \(\rho_{r}^{n,k}\) linearly independent \(\mathbb{P}^{n-3}\)’s which intersect \(C_{n}\) in degree \(n-2\).
Another result characterizes the parameterizing variety for a certain class of curves.
Theorem.
For any \(0 \leq \alpha \leq n-k-2\) the variety parameterizing rational curves \(C\) of degree \(n\) in \(\mathbb{P}^{n-k}\) whose normal bundles \(N_{C, \mathbb{P}^{n-k}}\) has the summand \(\mathcal{O}_{\mathbb{P}^{1}}(n+2)^{\alpha}\) is irreducible.
It is worth to point out that the summand \(\mathcal{O}_{\mathbb{P}^{1}}(n+2)\) appearing in the splitting type of normal bundles has the minimal possible degree for curves \(C\) having ordinary singularities.
The author uses Waring decomposition tools, for instance Apolarity Lemma and decompositions of binary forms, which is a new and interesting approach.

MSC:

14H50 Plane and space curves
14H45 Special algebraic curves and curves of low genus

References:

[1] Iarrobino, Anthony, Ancestor ideals of vector spaces of forms, and level algebra, J. Algebra, 272, 2, 530-580 (2004) · Zbl 1119.13015
[2] Chiantini, L.; Ciliberto, C., The Grassmannians of secant varieties of curves are not defective, Indag. Math. (N.S.), 13, 1, 23-28 (2002) · Zbl 1047.14035
[3] Eisenbud, D.; Van de Ven, A., On the normal bundles of smooth rational space curves, Math. Ann., 256, 4, 453-463 (1981) · Zbl 0443.14015
[4] Eisenbud, David; Van de Ven, A., On the variety of smooth rational space curves with given degree and normal bundle, Invent. Math., 67, 1, 89-100 (1982) · Zbl 0492.14016
[5] Ghione, Franco; Sacchiero, Gianni, Normal bundles of rational curves in \(P^3\), Manuscripta Math., 33, 2, 111-128 (1980) · Zbl 0496.14021
[6] Gimigliano, Alessandro; Harbourne, Brian; Idà, Monica, On plane rational curves and the splitting of the tangent bundle, Ann. Sc. Norm. Super. Pisa Cl. Sci., XII, 3, 587-621 (2013) · Zbl 1434.14004
[7] Grothendieck, A., Sur la classification des fibrés holomorphes sur la sphère de Riemann, Amer. J. Math., 79, 121-138 (1957) · Zbl 0079.17001
[8] Harris, Joe, Algebraic Geometry. A First Course, Grad. Texts in Math., vol. 133 (1995), Springer-Verlag: Springer-Verlag New York, corrected reprint of the 1992 original · Zbl 0779.14001
[9] Hartshorne, Robin, Algebraic Geometry, Grad. Texts in Math., vol. 52 (1977), Springer-Verlag: Springer-Verlag New York · Zbl 0367.14001
[10] Iarrobino, Anthony; Kanev, Vassil, Power Sums, Gorenstein Algebras, and Determinantal Loci, Lecture Notes in Math., vol. 1721 (1999), Springer-Verlag: Springer-Verlag Berlin, with Appendix C by Iarrobino and Steven L. Kleiman · Zbl 0942.14026
[11] Miret, Josep M., On the variety of rational curves in \(P^n\), Ann. Univ. Ferrara Sez. VII (N.S.), 32, 55-65 (1987), 1986 · Zbl 0649.14016
[12] Okonek, Christian; Schneider, Michael; Spindler, Heinz, Vector Bundles on Complex Projective Spaces, Progr. Math., vol. 3 (1980), Birkhäuser: Birkhäuser Boston, MA · Zbl 0438.32016
[13] Ramanathan, A., Deformations of principal bundles on the projective line, Invent. Math., 71, 1, 165-191 (1983) · Zbl 0492.14007
[14] Ramella, Luciana, La stratification du schéma de Hilbert des courbes rationnelles de \(P^n\) par le fibré tangent restreint, C. R. Acad. Sci. Paris Sér. I Math., 311, 3, 181-184 (1990) · Zbl 0721.14014
[15] Ramella, Luciana, Sur les schémas définissant les courbes rationnelles lisses de \(P^3\) ayant fibré normal et fibré tangent restreint fixés, Mém. Soc. Math. France (N.S.), 54 (1993), ii+74 pp · Zbl 0813.14020
[16] Sacchiero, Gianni, Normal bundles of rational curves in projective space, Ann. Univ. Ferrara Sez. VII (N.S.), 26, 33-40 (1981), 1980 · Zbl 0496.14020
[17] Sacchiero, Gianni, On the varieties parametrizing rational space curves with fixed normal bundle, Manuscripta Math., 37, 2, 217-228 (1982) · Zbl 0514.14010
[18] Sernesi, Edoardo, Deformations of Algebraic Schemes, Grundlehren Math. Wiss., vol. 334 (2006), Springer-Verlag: Springer-Verlag Berlin · Zbl 1102.14001
[19] Verdier, J., Two dimensional \(σ\)-models and harmonic maps from \(S^2\) to \(S^{2 n}\), (Serdaroglu, M.; Ínönü, E., Group Theoretical Methods in Physics. Group Theoretical Methods in Physics, Lecture Notes in Phys., vol. 180 (1983), Springer: Springer Berlin/Heidelberg), 136-141 · Zbl 0528.58008
[20] Zak, F. L., Tangents and Secants of Algebraic Varieties, Transl. Math. Monogr., vol. 127 (1993), American Mathematical Society: American Mathematical Society Providence, RI, translated from the Russian manuscript by the author · Zbl 0795.14018
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.