×

Uniqueness results in an extension of Pauli’s phase retrieval problem. (English) Zbl 1296.81020

Summary: In this paper, we investigate an extension of Pauli’s phase retrieval problem. The original problem asks whether a function \(u\) is uniquely determined by its modulus \(|u|\) and the modulus of its Fourier transform \(|\mathcal Fu|\) up to a constant phase factor. Here we extend this problem by considering the uniqueness of the phase retrieval problem for the fractional Fourier transform (FrFT) of variable order. This problem occurs naturally in optics and quantum physics.
More precisely, we show that if \(u\) and \(v\) are such that fractional Fourier transforms of order \(\alpha\) have same modulus \(|\mathcal F_\alpha u|=|\mathcal F_\alpha v|\) for some set \(\tau\) of \(\alpha\)’s, then \(v\) is equal to \(u\) up to a constant phase factor. The set \(\tau\) depends on some extra assumptions either on \(u\) or on both \(u\) and \(v\). Cases considered here are \(u\), \(v\) of compact support, pulse trains, Hermite functions or linear combinations of translates and dilates of Gaussians. In this last case, the set \(\tau\) may even be reduced to a single point (i.e. one fractional Fourier transform may suffice for uniqueness in the problem).

MSC:

81P50 Quantum state estimation, approximate cloning
42A38 Fourier and Fourier-Stieltjes transforms and other transforms of Fourier type
28A33 Spaces of measures, convergence of measures

Software:

PhaseLift

References:

[1] Allen, L. J.; Faulkner, H. M.L.; Nugent, K. A.; Oxley, M. P.; Paganin, D., Phase retrieval from images in the presence of first-order vortices, Phys. Rev. E, 63, 037602 (2001), 4 pp
[2] Allen, L. J.; Mc Bride, W.; Oxley, M., Exit wave reconstruction using soft X-rays, Opt. Commun., 233, 77-82 (2004)
[3] Allen, L. J.; Oxley, M. P., Phase retrieval from series of images obtained by defocus variation, Opt. Commun., 199, 65-75 (2001)
[4] Allman, B. E.; McMahon, P. J.; Nugent, K. A.; Paganin, D.; Jacobson, D.; Arif, M.; Werner, S. A., Imagingphase radiography with neutrons, Nature, 408, 158-159 (2000)
[5] Almeida, L. B., The fractional Fourier transform and time-frequency representations, IEEE Trans. Signal Process., 42, 3084-3091 (1994)
[6] Akutowicz, E. J., On the determination of the phase of a Fourier integral, I, Trans. Amer. Math. Soc., 83, 179-192 (1956) · Zbl 0073.08403
[7] Auslander, L.; Tolimieri, R., Radar ambiguity functions and group theory, SIAM J. Math. Anal., 16, 577-601 (1985) · Zbl 0581.43002
[8] Balan, R.; Casazza, P.; Edidin, D., On signal reconstruction without phase, Appl. Comput. Harmon. Anal., 20, 345-356 (2006) · Zbl 1090.94006
[9] Bandeira, A. S.; Cahill, J.; Mixon, D. G.; Nelson, A. A., Saving phase: Injectivity and stability for phase retrieval · Zbl 1305.90330
[10] Boas, R., Entire Functions (1954), Academic Press · Zbl 0058.30201
[11] Bodmann, B. G.; Hammen, N., Stable phase retrieval with low-redundancy frames · Zbl 1316.42035
[12] Bonami, A.; Demange, B.; Jaming, Ph., Hermite functions and uncertainty principles for the Fourier and the windowed Fourier transforms, Rev. Mat. Iberoam., 19, 23-55 (2003) · Zbl 1037.42010
[13] Bonami, A.; Garrigós, G.; Jaming, Ph., Discrete radar ambiguity problems, Appl. Comput. Harmon. Anal., 23, 388-414 (2007) · Zbl 1140.94005
[14] Born, M.; Wolf, E., Principles of Optics (1980), Pergamon Press: Pergamon Press New York
[15] Candès, E. J.; Strohmer, T.; Voroninski, V., PhaseLift: exact and stable signal recovery from magnitude measurements via convex programming, Comm. Pure Appl. Math., 66, 1241-1274 (2013) · Zbl 1335.94013
[16] Candès, E. J.; Eldar, Y.; Strohmer, T.; Voroninski, V., Phase retrieval via matrix completion, SIAM J. Imaging Sci., 6, 199-225 (2013) · Zbl 1280.49052
[17] Coene, W.; Janssen, G.; Op de Beeck, M.; Van Dyck, D., Phase retrieval through focus variation for ultra-resolution in field-emission transmission electron microscopy, Phys. Rev. Lett., 69, 37433746 (1992)
[18] Condon, N. U., Immersion of the Fourier transform in a continuous group of functional transformations, Proc. Natl. Acad. Sci. USA, 23, 158-164 (1937) · JFM 63.0374.02
[19] Cong, W.-X.; Chen, N.-X.; Gu, B.-Y., Recursive algorithm for phase retrieval in the fractional Fourier transform domain, Appl. Optics., 37, 6906-6910 (1998)
[20] Corbett, J. V., The Pauli problem, state reconstruction and quantum-real numbers, Rep. Math. Phys., 57, 53-68 (2006) · Zbl 1110.81007
[21] Corbett, J. V.; Hurst, C. A., Are wave functions uniquely determined by their position and momentum distributions?, J. Aust. Math. Soc. B, 20, 182-201 (1978) · Zbl 0392.46021
[22] Demange, B., Uncertainty principles related to quadratic forms, Mem. Soc. Math. Fr., 119 (2009), 102 pp · Zbl 1211.42010
[23] Dong, B.; Zhang, Y.; Gu, B.; Yang, G., Numerical investigation of phase retrieval in a fractional Fourier transform, J. Opt. Soc. Amer. A, 14, 2709-2714 (1997)
[24] Drenth, A. J.J.; Huiser, A.; Ferwerda, H., The problem of phase retrieval in light and electron microscopy of strong objects, Opt. Acta, 22, 615-628 (1975)
[25] Ertosun, M. G.; Atlý, H.; Ozaktas, H. M.; Barshan, B., Complex signal recovery from multiple fractional Fourier-transform intensities, Appl. Optics, 44, 4902-4908 (2005)
[26] Ertosun, M. G.; Atlý, H.; Ozaktas, H. M.; Barshan, B., Complex signal recovery from two fractional Fourier transform intensities: order and noise dependence, Opt. Commun., 244, 61-70 (2005)
[27] Farn, M. W., New iterative algorithm for the design of phase-only gratings, (Proc. SPIE, vol. 1555 (1991), SPIE: SPIE Bellingham, WA), 3442
[28] Fienup, J. R., Iterative method applied to image reconstruction and to computer-generated holograms, Optim. Eng., 19, 297-305 (1980)
[29] Fienup, J. R., Phase retrieval algorithms: a comparison, Appl. Optics, 21, 2758-2769 (1982)
[30] Frank, J.; Penczek, P.; Agrawal, R. K.; Grassucci, R. A.; Heagle, A. B., Three-dimensional cryoelectron microscopy of ribosomes, (Celander, Daniel W., RNA-Ligand Interactions. Part A. RNA-Ligand Interactions. Part A, Methods Enzymol., vol. 317 (2000), Academic Press: Academic Press San Diego), 276-291
[31] Goodman, J. W., Introduction to Fourier Optics (1996), McGraw-Hill: McGraw-Hill New York
[32] Heinosaari, T.; Mazzarella, L.; Wolf, M. M., Quantum tomography under prior information, Comm. Math. Phys., 318, 355-374 (2013) · Zbl 1263.81102
[33] Hogan, J. A.; Lakey, J. D., Time-Frequency and Time-Scale Methods: Adaptive Decompositions, Uncertainty Principles, and Sampling, Appl. Comput. Harmon. Anal. (2005), Birkhäuser: Birkhäuser Boston · Zbl 1079.42027
[34] Hogan, J. A.; Lakey, J. D., Hardy’s theorem and rotations, Proc. Amer. Math. Soc., 134, 1459-1466 (2006) · Zbl 1089.42002
[35] Huiser, A.; Ferwerda, H., The problem of phase retrieval in light and electron microscopy of strong objects. II. On the uniqueness and stability of object reconstruction procedures using two defocused images, Opt. Acta, 23, 445-456 (1976)
[36] Hurt, N. E., Phase Retrieval and Zero Crossing: Mathematical Methods in Image Reconstruction, Math. and Its Appl. (1989), Kluwer Academic Publisher · Zbl 0687.94001
[37] Ismagilov, R. S., On the Pauli problem, Funktsional. Anal. i Prilozhen., 30, 82-84 (1996) · Zbl 0890.43002
[38] Ivanov, V. Yu.; Sivokon, V. P.; Vorontsov, M. A., Phase retrieval from a set of intensity measurements: theory and experiment, J. Opt. Soc. Amer. A, 9, 1515-1524 (1992)
[39] Jaming, Ph., Phase retrieval techniques for radar ambiguity functions, J. Fourier Anal. Appl., 5, 313-333 (1999)
[40] Klibanov, M. V.; Sacks, P. E.; Tikhonravov, A. V., The phase retrieval problem, Inverse Problems, 11, 1-28 (1995) · Zbl 0821.35150
[41] Lohmann, A. W., Image rotation, Wigner rotation, and the fractional Fourier transform, J. Opt. Soc. Amer. A, 10, 2181-2186 (1993)
[42] Luke, D. R.; Burke, J. V.; Lyon, R. G., Optical wavefront reconstruction: theory and numerical methods, SIAM Rev., 44, 169-224 (2002) · Zbl 1094.78004
[43] Lvovsky, A. I.; Raymer, M. G., Continuous-variable optical quantum state tomography, Rev. Modern Phys., 81, 299-332 (2009)
[44] McDonald, J. N., Phase retrieval and magnitude retrieval of entire functions, J. Fourier Anal. Appl., 10, 259-267 (2004) · Zbl 1063.94012
[45] Man’ko, M. A., Fractional Fourier Transform in information processing, tomography of optical signal, and Green function of harmonic oscillator, J. Russ. Laser Res., 20, 226-238 (1999)
[46] Mendlovic, D.; Ozaktas, H. M., Fractional Fourier transforms and their optical implementation: I, J. Opt. Soc. Amer. A, 10, 1875-1881 (1993)
[47] Mendlovic, D.; Ozaktas, H. M., Fractional Fourier transforms and their optical implementation: II, J. Opt. Soc. Amer. A, 10, 2522-2531 (1993)
[48] Miao, J.; Charalambous, P.; Kirz, J.; Sayre, D., Extending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens, Nature, 400, 342-344 (1999)
[49] Miao, J.; Sayre, D.; Chapman, H. N., Phase retrieval from the magnitude of the Fourier transforms of nonperiodic objects, J. Opt. Soc. Amer. A, 15, 1662-1669 (1998)
[50] Millane, R. P., Phase retrieval in crystallography and optics, J. Opt. Soc. Amer. A, 7, 394-411 (1990)
[51] Mondragon, D.; Voroninski, V., Determination of all pure quantum states from a minimal number of observables
[52] Namias, V., The fractional order Fourier transform and its applications to quantum mechanics, J. Inst. Math. Appl., 25, 241-265 (1980) · Zbl 0434.42014
[53] Natterer, F., The Mathematics of Computerized Tomography, Classics Appl. Math., vol. 32 (2001), SIAM: SIAM Philadelphia · Zbl 0973.92020
[54] Nugent, K. A.; Gureyev, T. E.; Cookson, D.; Paganin, D.; Barnea, Z., Quantitative phase imaging using hard X rays, Phys. Rev. Lett., 77, 2961-2964 (1996)
[55] Ozaktas, H. M.; Mendlovic, D., Fractional Fourier optics, J. Opt. Soc. Amer. A, 12, 743-751 (1995)
[56] Ozaktas, H. M.; Zalevsky, Z.; Kutay, M. A., The Fractional Fourier Transform with Applications in Optics and Signal Processing (2001), Wiley
[57] Pallat-Finet, P., Fresnel diffraction and the fractional-order Fourier transforms, Opt. Lett., 19, 1388-1390 (1994)
[58] Ramm, A. G.; Katsevich, A. I., The Radon Transform and Local Tomography (1996), CRC Press: CRC Press Boca Raton, FL · Zbl 0863.44001
[59] Reichenbach, H., Philosophic Foundations of Quantum Mechanics (1944), University of California Press: University of California Press Berkeley
[60] Rosenblatt, J., Phase retrieval, Comm. Math. Phys., 95, 317-343 (1984) · Zbl 0577.42009
[61] Seelamantula, C. S.; Villiger, M. L.; Leitgeb, R. A.; Unser, M., Exact and efficient signal reconstruction in frequency-domain optical-coherence tomography, J. Opt. Soc. Amer. A, 25, 1762-1771 (2008)
[62] Sommerfeld, A., Optics (1954), Academic Press: Academic Press New York · Zbl 0058.22104
[63] (Stark, H., Image Recovery: Theory and Application (1987), Academic Press: Academic Press New York) · Zbl 0627.94001
[64] Szoke, A., Holographic microscopy with a complicated reference, J. Imaging Sci. Technol., 41, 332-341 (1997)
[65] Titchmarsh, E., The zeroes of certain integral functions, Proc. Lond. Math. Soc. (2), 25, 283-307 (1926) · JFM 52.0334.03
[66] Titchmarsh, E., The Theory of Functions (1939), Oxford University Press · JFM 65.0302.01
[67] van Toorn, P.; Ferwerda, H., The problem of phase retrieval in light and electron microscopy of strong objects. III. Developments of methods for numerical solution, Opt. Acta, 23, 456-468 (1976)
[68] van Toorn, P.; Ferwerda, H., The problem of phase retrieval in light and electron microscopy of strong objects. IV. Checking algorithms by means of simulated objects, Opt. Acta, 23, 468-481 (1976)
[70] Vogt, A., Position and momentum distributions do not determine the quantum mechanical state, (Marlow, A. R., Mathematical Foundations of Quantum Theory (1978), Academic Press: Academic Press New York)
[71] Waldspurger, I.; d’Aspremont, A.; Mallat, S., Phase recovery, maxcut and complex semidefinite programming · Zbl 1329.94018
[72] Walter, A., The question of phase retrieval in optics, Opt. Acta, 10, 41-49 (1963)
[73] Wiener, N., Hermitian polynomials and Fourier analysis, J. Math. Phys., 8, 70-73 (1929) · JFM 55.0822.01
[74] Wilcox, C. H., The synthesis problem for radar ambiguity functions, (Blahut, R.; Miller, W.; Wilcox, C., Radar and Sonar, Part I. Radar and Sonar, Part I, Math. and Its Appl., I.M.A., vol. 32 (1991), Springer: Springer New York), 229-260, MRC Tech. Summary Report 157, 1960, republished · Zbl 0729.43006
[75] Zhao, D.; Zhang, W.; Ge, F.; Wang, S., Fractional Fourier transform and the diffraction of any misaligned optical system in spatial-frequency domain, Opt. Laser Technol., 31, 443-447 (2001)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.