×

Exponentially slow motion of interface layers for the one-dimensional Allen-Cahn equation with nonlinear phase-dependent diffusivity. (English) Zbl 1445.35025

Summary: This paper considers a one-dimensional generalized Allen-Cahn equation of the form \[ u_t = \varepsilon^2 (D(u)u_x)_x - f(u), \] where \(\varepsilon > 0\) is constant, \(D = D(u)\) is a positive, uniformly bounded below, diffusivity coefficient that depends on the phase field \(u\), and \(f(u)\) is a reaction function that can be derived from a double-well potential with minima at two pure phases \(u = \alpha\) and \(u = \beta\). It is shown that interface layers (namely, solutions that are equal to \(\alpha\) or \(\beta\) except at a finite number of thin transitions of width \(\varepsilon)\) persist for an exponentially long time proportional to \(\exp (C/\varepsilon)\), where \(C > 0\) is a constant. In other words, the emergence and persistence of metastable patterns for this class of equations is established. For that purpose, we prove energy bounds for a renormalized effective energy potential of Ginzburg-Landau type. Numerical simulations, which confirm the analytical results, are also provided.

MSC:

35B25 Singular perturbations in context of PDEs
35K20 Initial-boundary value problems for second-order parabolic equations
35K59 Quasilinear parabolic equations
35B36 Pattern formations in context of PDEs
82B26 Phase transitions (general) in equilibrium statistical mechanics

References:

[1] Allen, SM; Cahn, JW, A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening, Acta Metall., 27, 6, 1085-1095 (1979)
[2] Bethuel, F.; Smets, D., Slow motion for equal depth multiple-well gradient systems: the degenerate case, Discrete Contin. Dyn. Syst., 33, 1, 67-87 (2013) · Zbl 1263.35018
[3] Boltzmann, L., Zur Integration der Diffusionsgleichung bei variabeln Diffusionscoefficienten, Ann. Phys., 289, 13, 959-964 (1894) · JFM 25.1553.02
[4] Braides, A.: \( \Gamma \)-convergence for beginners, vol. 22 of Oxford Lecture Series in Mathematics and its Applications. Oxford University Press, Oxford (2002) · Zbl 1198.49001
[5] Broadbridge, P., Exact solvability of the Mullins nonlinear diffusion model of groove development, J. Math. Phys., 30, 7, 1648-1651 (1989) · Zbl 0693.35091
[6] Bronsard, L.; Kohn, RV, On the slowness of phase boundary motion in one space dimension, Commun. Pure Appl. Math., 43, 8, 983-997 (1990) · Zbl 0761.35044
[7] Cahn, J. W., Free energy of a nonuniform system. II. Thermodynamic basis, J. Chem. Phys, 30, 5, 1121-1124 (1959)
[8] Cahn, JW, On spinodal decomposition, Acta Metall., 9, 9, 795-801 (1961)
[9] Cahn, JW; Elliott, CM; Novick-Cohen, A., The Cahn-Hilliard equation with a concentration dependent mobility: motion by minus the Laplacian of the mean curvature, Eur. J. Appl. Math., 7, 3, 287-301 (1996) · Zbl 0861.35039
[10] Cahn, J. W.; Hilliard, J. E., Free energy of a nonuniform system. I. Interfacial free energy, J. Chem. Phys, 28, 2, 258-267 (1958) · Zbl 1431.35066
[11] Cahn, JW; Hilliard, JE, Spinodal decomposition: a reprise, Acta Metall., 19, 2, 151-161 (1971)
[12] Carr, J.; Pego, RL, Metastable patterns in solutions of \(u_t=\epsilon^2u_{xx}-f(u)\), Commun. Pure Appl. Math., 42, 5, 523-576 (1989) · Zbl 0685.35054
[13] Carr, J.; Pego, RL, Invariant manifolds for metastable patterns in \(u_t=\epsilon^2u_{xx}-f(u)\), Proc. R. Soc. Edinb. Sect. A, 116, 1-2, 133-160 (1990) · Zbl 0738.35023
[14] Chen, X., Generation, propagation, and annihilation of metastable patterns, J. Differ. Equ., 206, 2, 399-437 (2004) · Zbl 1061.35014
[15] Cirillo, ENM; Ianiro, N.; Sciarra, G., Allen-Cahn and Cahn-Hilliard-like equations for dissipative dynamics of saturated porous media, J. Mech. Phys. Solids, 61, 2, 629-651 (2013) · Zbl 1258.74064
[16] Cirillo, ENM; Ianiro, N.; Sciarra, G., Compacton formation under Allen-Cahn dynamics, Proc. R. Soc. A: Math. Phys. Eng. Sci., 472, 2188, 20150852 (2016) · Zbl 1371.82068
[17] Dai, S.; Du, Q., Computational studies of coarsening rates for the Cahn-Hilliard equation with phase-dependent diffusion mobility, J. Comput. Phys., 310, 85-108 (2016) · Zbl 1349.80043
[18] Dai, S.; Du, Q., Weak solutions for the Cahn-Hilliard equation with degenerate mobility, Arch. Ration. Mech. Anal., 219, 3, 1161-1184 (2016) · Zbl 1333.35188
[19] Dal Maso, G.: An Introduction to \(\Gamma \)-Convergence, vol. 8 of Progress in Nonlinear Differential Equations and their Applications, Birkhäuser Boston, Inc., Boston (1993) · Zbl 0816.49001
[20] Dal Passo, R.; Giacomelli, L.; Novick-Cohen, A., Existence for an Allen-Cahn/Cahn-Hilliard system with degenerate mobility, Interfaces Free Bound., 1, 2, 199-226 (1999) · Zbl 0952.35159
[21] De Giorgi, E.; Franzoni, T., Su un tipo di convergenza variazionale, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat. (8), 58, 6, 842-850 (1975) · Zbl 0339.49005
[22] Elliott, CM; Garcke, H., On the Cahn-Hilliard equation with degenerate mobility, SIAM J. Math. Anal., 27, 2, 404-423 (1996) · Zbl 0856.35071
[23] Evans, LC; Soner, HM; Souganidis, PE, Phase transitions and generalized motion by mean curvature, Commun. Pure Appl. Math., 45, 9, 1097-1123 (1992) · Zbl 0801.35045
[24] Federer, H.: Geometric Measure Theory. Die Grundlehren der mathematischen Wissenschaften, Band 153, Springer, New York Inc., New York (1969) · Zbl 0176.00801
[25] Fife, PC; Fiedler, B., Pattern formation in gradient systems, Handbook of Dynamical Systems, 677-722 (2002), Amsterdam: North-Holland, Amsterdam · Zbl 1049.35090
[26] Folino, R., Slow motion for one-dimensional nonlinear damped hyperbolic Allen-Cahn systems, Electron. J. Differ. Equ., 2019, 113, 1-21 (2019) · Zbl 1426.35148
[27] Folino, R.; Lattanzio, C.; Mascia, C., Slow dynamics for the hyperbolic Cahn-Hilliard equation in one-space dimension, Math. Methods Appl. Sci., 42, 8, 2492-2512 (2019) · Zbl 1473.35024
[28] Fusco, G.; Hale, JK, Slow-motion manifolds, dormant instability, and singular perturbations, J. Dyn. Differ. Equ., 1, 1, 75-94 (1989) · Zbl 0684.34055
[29] Grant, CP, Slow motion in one-dimensional Cahn-Morral systems, SIAM J. Math. Anal., 26, 1, 21-34 (1995) · Zbl 0813.35042
[30] Green, H.S., Hurst, C.A.: Order-Disorder Phenomena, Monographs in Statistical Physics and Thermodynamics Vol. 5, Interscience Publishers, Wiley, London (1964) · Zbl 0138.22301
[31] Hartley, GS; Crank, J., Some fundamental definitions and concepts in diffusion processes, Trans. Faraday Soc., 45, 1, 801-818 (1949)
[32] Ilmanen, T., Convergence of the Allen-Cahn equation to Brakke’s motion by mean curvature, J. Differ. Geom., 38, 2, 417-461 (1993) · Zbl 0784.53035
[33] Kohn, R.; Otto, F.; Reznikoff, MG; Vanden-Eijnden, E., Action minimization and sharp-interface limits for the stochastic Allen-Cahn equation, Commun. Pure Appl. Math., 60, 3, 393-438 (2007) · Zbl 1154.35021
[34] Lee, CF, On the solution of concentration distributions in some binary alloy systems, Acta Metall., 19, 5, 415-420 (1971)
[35] Matano, C., On the relation between the diffusion-coefficients and concentrations of solid metals, Jpn. J. Phys., 8, 3, 109-113 (1933)
[36] Modica, L.; Mortola, S., Il limite nella \(\Gamma \)-convergenza di una famiglia di funzionali ellittici, Boll. Un. Mat. Ital. A (5), 14, 3, 526-529 (1977) · Zbl 0364.49006
[37] Modica, L.; Mortola, S., Un esempio di \(\Gamma^-\)-convergenza, Boll. Un. Mat. Ital. B (5), 14, 1, 285-299 (1977) · Zbl 0356.49008
[38] Mullins, WW, Theory of thermal grooving, J. Appl. Phys., 28, 3, 333-339 (1957)
[39] Otto, F.; Reznikoff, MG, Slow motion of gradient flows, J. Differ. Equ., 237, 2, 372-420 (2007) · Zbl 1138.35036
[40] Owen, NC; Sternberg, P., Nonconvex variational problems with anisotropic perturbations, Nonlinear Anal., 16, 7-8, 705-719 (1991) · Zbl 0748.49034
[41] Rubinstein, J.; Sternberg, P.; Keller, JB, Fast reaction, slow diffusion, and curve shortening, SIAM J. Appl. Math., 49, 1, 116-133 (1989) · Zbl 0701.35012
[42] Sánchez-Garduño, F.; Maini, PK, Travelling wave phenomena in non-linear diffusion degenerate Nagumo equations, J. Math. Biol., 35, 6, 713-728 (1997) · Zbl 0887.35073
[43] Schmid, A., A time dependent Ginzburg-Landau equation and its application to the problem of resistivity in the mixed state, Phys. Konden. Mater., 5, 4, 302-317 (1966)
[44] Taylor, JE; Cahn, JW, Linking anisotropic sharp and diffuse surface motion laws via gradient flows, J. Stat. Phys., 77, 1-2, 183-197 (1994) · Zbl 0844.35044
[45] Vázquez, J.L.: The Porous Medium Equation, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, Oxford (2007). Mathematical theory · Zbl 1107.35003
[46] Wagner, C., On the solution of diffusion problems involving concentration-dependent diffusion coefficients, J. Met., 4, 1, 91-96 (1952)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.