×

A novel approach to perturbative calculations for a large class of interacting boson theories. (English) Zbl 1380.81192

Summary: We present a method of calculating the interacting \(S\)-matrix to an arbitrary perturbative order for a large class of boson interaction Lagrangians. The method takes advantage of a previously unexplored link between the \(n\)-point Green’s function and a certain system of linear Diophantine equations. By finding all nonnegative solutions of the system, the task of perturbatively expanding an interacting \(S\)-matrix becomes elementary for any number of interacting fields, to an arbitrary perturbative order (irrespective of whether it makes physical sense) and for a large class of scalar boson theories. The method does not rely on the position-based Feynman diagrams and promises to be extended to many perturbative models typically studied in quantum field theory. Aside from interaction field calculations we showcase our approach by expanding a pair of Unruh-DeWitt detectors coupled to Minkowski vacuum to an arbitrary perturbative order in the coupling constant. We also link our result to Hafnian as introduced by Caianiello and present a method to list all \((2 n - 1)!!\) perfect matchings of a complete graph on \(2n\) vertices.

MSC:

81T10 Model quantum field theories
81U20 \(S\)-matrix theory, etc. in quantum theory
81T15 Perturbative methods of renormalization applied to problems in quantum field theory
81T18 Feynman diagrams
35J08 Green’s functions for elliptic equations
11D04 Linear Diophantine equations

References:

[1] Schwartz, Matthew D., Quantum Field Theory and the Standard Model (2014), Cambridge University Press
[2] Hahn, Thomas, Generating Feynman diagrams and amplitudes with FeynArts 3, Comput. Phys. Commun., 140, 3, 418-431 (2001) · Zbl 0994.81082
[3] Cullen, Gavin; van Deurzen, Hans; Greiner, Nicolas; Heinrich, Gudrun; Luisoni, Gionata; Mastrolia, Pierpaolo; Mirabella, Edoardo; Ossola, Giovanni; Peraro, Tiziano; Schlenk, Johannes, GoSam-2.0: a tool for automated one-loop calculations within the Standard Model and beyond, Eur. Phys. J. C, 74, 8, 3001 (2014)
[4] Bélanger, Geneviève; Boudjema, F.; Fujimoto, J.; Ishikawa, T.; Kaneko, T.; Kato, K.; Shimizu, Y., Automatic calculations in high energy physics and Grace at one-loop, Phys. Rep., 430, 3, 117-209 (2006)
[5] Shtabovenko, Vladyslav; Mertig, Rolf; Orellana, Frederik, New developments in FeynCalc 9.0, Comput. Phys. Commun., 207, 432-444 (2016) · Zbl 1375.68227
[6] Alwall, J.; Frederix, R.; Frixione, S.; Hirschi, V.; Maltoni, Fabio; Mattelaer, Olivier; Shao, H-S.; Stelzer, T.; Torrielli, P.; Zaro, M., The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations, J. High Energy Phys., 2014, 7, Article 1 pp. (2014) · Zbl 1402.81011
[7] Tentyukov, M.; Fleischer, J., A Feynman diagram analyzer DIANA, Comput. Phys. Commun., 1, 132, 124-141 (2000) · Zbl 1073.81506
[8] Christensen, Neil D.; Duhr, Claude, FeynRules—Feynman rules made easy, Comput. Phys. Commun., 180, 9, 1614-1641 (2009) · Zbl 07872404
[9] Kleinert, Hagen; Pelster, Axel; Kastening, Boris; Bachmann, Michael, Recursive graphical construction of Feynman diagrams and their multiplicities in \(\varphi^4\) and \(\varphi^2 A\) theory, Phys. Rev. E, 62, 2, 1537 (2000)
[10] Kajantie, Keijo; Laine, Mikko; Schroeder, York, Simple way to generate high order vacuum graphs, Phys. Rev. D, 65, 4, Article 045008 pp. (2002)
[11] Palmer, C. D.; Carrington, M. E., A general expression for symmetry factors of Feynman diagrams, Can. J. Phys., 80, 8, 847-854 (2002)
[12] Bender, Carl M.; Wy, Tai Tsun, Statistical analysis of Feynman diagrams, Phys. Rev. Lett., 37, 3, 117 (1976)
[13] Cvitanović, Predrag; Lautrup, B.; Pearson, Robert B., Number and weights of Feynman diagrams, Phys. Rev. D, 18, 6, 1939 (1978)
[14] Hue, L. T.; Hung, H. T.; Long, H. N., General formula for symmetry factors of Feynman diagrams, Rep. Math. Phys., 69, 3, 331-351 (2012) · Zbl 1277.81088
[15] Hurst, Charles Angas, The enumeration of graphs in the Feynman-Dyson technique, Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci., 214, 1116, 44-61 (1952) · Zbl 0049.27502
[16] Mestre, Ângela; Oeckl, Robert, Generating loop graphs via Hopf algebra in quantum field theory, J. Math. Phys., 47, 12, Article 122302 pp. (2006) · Zbl 1112.81081
[17] Brouder, Christian, Quantum field theory meets Hopf algebra, Math. Nachr., 282, 12, 1664-1690 (2009) · Zbl 1182.81056
[18] Kleinert, Hagen; Pelster, Axel; Van den Bossche, Bruno, Recursive graphical construction of Feynman diagrams and their weights in Ginzburg-Landau theory, Physica A, 312, 1, 141-152 (2002) · Zbl 0997.81071
[19] Pelster, Axel; Kleinert, Hagen, Functional differential equations for the free energy and the effective energy in the broken-symmetry phase of \(φ 4\)-theory and their recursive graphical solution, Physica A, 323, 370-400 (2003) · Zbl 1030.81510
[20] Bachmann, Michael; Kleinert, Hagen; Pelster, Axel, Recursive graphical construction of Feynman diagrams in quantum electrodynamics, Phys. Rev. D, 61, 8, Article 085017 pp. (2000) · Zbl 0995.81153
[21] Pelster, Axel; Glaum, Konstantin, Recursive graphical solution of closed Schwinger-Dyson equations in \(φ 4\)-theory. (i). Generation of connected and one-particle irreducible Feynman diagrams, Physica A, 335, 3, 455-486 (2004)
[22] Pelster, Axel; Glaum, Konstantin, Many-body vacuum diagrams and their recursive graphical construction, Phys. Status Solidi B, 237, 1, 72-81 (2003)
[23] Pelster, Axel; Kleinert, Hagen; Bachmann, Michael, Functional closure of Schwinger-Dyson equations in quantum electrodynamics: 1. Generation of connected and one-particle irreducible Feynman diagrams, Ann. Phys., 297, 2, 363-395 (2002) · Zbl 0995.81153
[24] Wick, Gian-Carlo, The evaluation of the collision matrix, Phys. Rev., 80, 2, 268 (1950) · Zbl 0040.13006
[25] Isserlis, Leon, On a formula for the product-moment coefficient of any order of a normal frequency distribution in any number of variables, Biometrika, 12, 1/2, 134-139 (1918)
[26] Beck, Matthias; Robins, Sinai, Computing the Continuous Discretely (2007), Springer · Zbl 1114.52013
[27] Stanley, Richard P., Enumerative Combinatorics, vol. 1, Cambridge Studies in Advanced Mathematics, vol. 49 (1997), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0889.05001
[28] Dyson, Freeman J., Divergence of perturbation theory in quantum electrodynamics, Phys. Rev., 85, 4, 631 (1952) · Zbl 0046.21501
[29] Lipatov, L. N., Divergence of the perturbation theory series and the quasiclassical theory, Sov. Phys. JETP. Sov. Phys. JETP, Zh. Eksp. Teor. Fiz., 72, 411-223 (1977)
[30] Zinn-Justin, Jean, Perturbation series at large orders in quantum mechanics and field theories: application to the problem of resummation, Phys. Rep., 70, 2, 109-167 (1981)
[31] Unruh, William G., Notes on black-hole evaporation, Phys. Rev. D, 14, 4, 870 (1976)
[32] DeWitt, Bryce S., Quantum gravity: the new synthesis, (Hawking, S. W.; Israel, W., General Relativity: An Introductory Survey (1979)), 680
[33] Svaiter, B. F.; Svaiter, N. F., Inertial and noninertial particle detectors and vacuum fluctuations, Phys. Rev. D, 46, 12, 5267 (1992)
[34] Higuchi, A.; Matsas, G. E.A.; Peres, C. B., Uniformly accelerated finite-time detectors, Phys. Rev. D, 48, 8, 3731 (1993)
[35] Ver Steeg, Greg; Menicucci, Nicolas C., Entangling power of an expanding universe, Phys. Rev. D, 79, 4, Article 044027 pp. (2009)
[36] Reznik, Benni; Retzker, Alex; Silman, Jonathan, Violating Bell’s inequalities in vacuum, Phys. Rev. A, 71, 4, Article 042104 pp. (2005) · Zbl 1227.81053
[37] Schlicht, Sebastian, Considerations on the Unruh effect: causality and regularization, Class. Quantum Gravity, 21, 19, 4647 (2004) · Zbl 1060.83025
[38] Lin, Shih-Yuin; Hu, Bei-Lok, Accelerated detector-quantum field correlations: from vacuum fluctuations to radiation flux, Phys. Rev. D, 73, 12, Article 124018 pp. (2006)
[39] Louko, Jorma; Satz, Alejandro, How often does the Unruh-DeWitt detector click? Regularization by a spatial profile, Class. Quantum Gravity, 23, 22, 6321 (2006) · Zbl 1117.83030
[40] Sriramkumar, L.; Padmanabhan, T., Finite-time response of inertial and uniformly accelerated Unruh-DeWitt detectors, Class. Quantum Gravity, 13, 8, 2061 (1996) · Zbl 0875.53043
[41] Barbado, Luis C.; Visser, Matt, Unruh-DeWitt detector event rate for trajectories with time-dependent acceleration, Phys. Rev. D, 86, 8, Article 084011 pp. (2012)
[42] Cliche, Mathieu, Information propagation and entanglement generation between two Unruh-DeWitt detectors (2010), University of Waterloo, PhD thesis
[43] Franson, J. D., Generation of entanglement outside of the light cone, J. Mod. Opt., 55, 13, 2117-2140 (2008) · Zbl 1156.81480
[44] Brádler, Kamil; Kalajdzievski, Timjan; Siopsis, George; Weedbrook, Christian, Absolutely covert quantum communication (2016)
[45] Caianiello, Eduardo R., On quantum field theory—I: explicit solution of Dyson’s equation in electrodynamics without use of Feynman graphs, Nuovo Cimento (1943-1954), 10, 12, 1634-1652 (1953) · Zbl 0053.17102
[46] Barvinok, Alexander, Approximating permanents and hafnians (2016) · Zbl 1404.15008
[47] Rudelson, Mark; Samorodnitsky, Alex; Zeitouni, Ofer, Hafnians, perfect matchings and Gaussian matrices, Ann. Probab., 44, 4, 2858-2888 (2016) · Zbl 1393.60009
[48] Schultz, Harry P.; Schultz, Tor P., Topological organic chemistry. 5. Graph theory, matrix hafnians and pfaffians, and topological indexes of alkanes, J. Chem. Inf. Comput. Sci., 32, 4, 364-368 (1992)
[49] Krenn, Mario; Gu, Xuemei; Zeilinger, Anton, Quantum experiments and graphs: multiparty states as coherent superpositions of perfect matchings (2017)
[50] Rohrlich, F., Quantum electrodynamics of charged particles without spin, Phys. Rev., 80, 4, 666 (1950) · Zbl 0040.28003
[51] Brádler, Kamil, On the number of nonnegative solutions of a system of linear Diophantine equations (2016) · Zbl 1331.81075
[52] Ehrhart, Eugène, Sur les polyèdres rationnels homothétiques à \(n\) dimensions, C. R. Acad. Sci., 254, 616 (1962) · Zbl 0100.27601
[53] Nakanishi, Noboru, Graph Theory and Feynman Integrals (1971), Gordon and Breach · Zbl 0212.29203
[54] Kreher, Donald L.; Stinson, Douglas R., Combinatorial Algorithms: Generation, Enumeration, and Search, vol. 7 (1998), CRC press · Zbl 0911.05002
[55] Harary, Frank; Palmer, Edgar M., Graphical Enumeration (2014), Elsevier · Zbl 0266.05108
[56] Harary, Frank; Palmer, Edgar M.; Read, Ronald C., The number of ways to label a structure, Psychometrika, 32, 2, 155-156 (1967)
[57] Abdesselam, Abdelmalek, Feynman diagrams in algebraic combinatorics, Sémin. Lothar. Comb., 49, 45 (2003) · Zbl 1034.81518
[58] Hoffmann, Christoph M., Group-Theoretic Algorithms and Graph Isomorphism, Lecture Notes in Computer Science, vol. 136 (1982), Springer-Verlag: Springer-Verlag Berlin, Heidelberg · Zbl 0487.68055
[59] The Sage Developers, SageMath, the Sage Mathematics Software System (Version 7.4.0) (2016)
[60] Erdős, Paul; Rényi, Alfréd, Asymmetric graphs, Acta Math. Hung., 14, 3-4, 295-315 (1963) · Zbl 0118.18901
[61] Minc, Henryk, Permanents, vol. 6 (1984), Cambridge University Press · Zbl 0543.15005
[62] Hümmer, Daniel; Martín-Martínez, Eduardo; Kempf, Achim, Renormalized Unruh-DeWitt particle detector models for boson and fermion fields, Phys. Rev. D, 93, 2, Article 024019 pp. (2016)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.