×

Algebraic lattices in QFT renormalization. (English) Zbl 1355.81117

Summary: The structure of overlapping subdivergences, which appear in the perturbative expansions of quantum field theory, is analyzed using algebraic lattice theory. It is shown that for specific QFTs the sets of subdivergences of Feynman diagrams form algebraic lattices. This class of QFTs includes the standard model. In kinematic renormalization schemes, in which tadpole diagrams vanish, these lattices are semimodular. This implies that the Hopf algebra of Feynman diagrams is graded by the coradical degree or equivalently that every maximal forest has the same length in the scope of BPHZ renormalization. As an application of this framework, a formula for the counter terms in zero-dimensional QFT is given together with some examples of the enumeration of primitive or skeleton diagrams.

MSC:

81T18 Feynman diagrams
81T15 Perturbative methods of renormalization applied to problems in quantum field theory
81T16 Nonperturbative methods of renormalization applied to problems in quantum field theory
06B99 Lattices
16T05 Hopf algebras and their applications

Software:

feyncop; feyngen

References:

[1] Argyres E.N., van Hameren A.F.W., Kleiss R.H.P., Papadopoulos C.G.: Zero-dimensional field theory. Eur. Phys. J. C-Particl. Fields 19(3), 567-582 (2001) · Zbl 1078.81541
[2] Bender C.M., Wy T.T.: Statistical analysis of Feynman diagrams. Phys. Rev. Lett. 37(3), 117 (1976) · doi:10.1103/PhysRevLett.37.117
[3] Bergeron N., Sottile F.: Hopf algebras and edge-labeled posets. J. Algebra 216(2), 641-651 (1999) · Zbl 0933.05149 · doi:10.1006/jabr.1998.7794
[4] Berghoff, M.: Wonderful compactifications in quantum field theory. arXiv preprint (2014). arXiv:1411.5583 [hep-th] · Zbl 1376.81052
[5] Bessis D., Itzykson C., Zuber J.-B.: Quantum field theory techniques in graphical enumeration. Adv. Appl. Math. 1(2), 109-157 (1980) · Zbl 0453.05035 · doi:10.1016/0196-8858(80)90008-1
[6] Borinsky M.: Feynman graph generation and calculations in the Hopf algebra of Feynman graphs. Comput. Phys. Commun. 185(12), 3317-3330 (2014) · Zbl 1360.81012 · doi:10.1016/j.cpc.2014.07.023
[7] Borinsky, M.: Asymptotic enumeration of Feynman diagrams (2015). (In preparation) · Zbl 1372.81124
[8] Brown F., Kreimer D.: Angles, scales and parametric renormalization. Lett. Math. Phys. 103(9), 933-1007 (2013) · Zbl 1273.81164 · doi:10.1007/s11005-013-0625-6
[9] Connes A., Kreimer D.: Renormalization in quantum field theory and the Riemann-Hilbert problem i: The Hopf algebra structure of graphs and the main theorem. Commun. Math. Phys. 210(1), 249-273 (2000) · Zbl 1032.81026 · doi:10.1007/s002200050779
[10] Connes A., Kreimer D.: Renormalization in quantum field theory and the Riemann-Hilbert Problem ii: The β-function, diffeomorphisms and the renormalization group. Commun. Math. Phys. 216(1), 215-241 (2001) · Zbl 1042.81059 · doi:10.1007/PL00005547
[11] Cvitanović P., Lautrup B., Pearson R.B.: Number and weights of Feynman diagrams. Phys. Rev. D 18(6), 1939 (1978) · doi:10.1103/PhysRevD.18.1939
[12] Dyson F.J.: Divergence of perturbation theory in quantum electrodynamics. Phys. Rev. 85(4), 631 (1952) · Zbl 0046.21501 · doi:10.1103/PhysRev.85.631
[13] Ehrenborg R.: On posets and Hopf algebras. Adv. Math. 119(1), 1-25 (1996) · Zbl 0851.16033 · doi:10.1006/aima.1996.0026
[14] Figueroa H., Gracia-Bondia J.M.: Combinatorial Hopf algebras in quantum field theory i. Rev. Math. Phys. 17(08), 881-976 (2005) · Zbl 1090.16016 · doi:10.1142/S0129055X05002467
[15] Gurau, R., Rivasseau, V., Sfondrini, A.: Renormalization: an advanced overview. arXiv:1401.5003 (2014)
[16] Hurst, C.A.: The enumeration of graphs in the Feynman-Dyson technique. In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 214, pp. 44-61. The Royal Society, New York (1952) · Zbl 0049.27502
[17] Joni S.A., Rota G.-C.: Coalgebras and bialgebras in combinatorics. Stud. Appl. Math. 61(2), 93-139 (1979) · Zbl 0471.05020 · doi:10.1002/sapm197961293
[18] Kontsevich M.: Intersection theory on the moduli space of curves and the matrix Airy function. Commun. Math. Phys. 147(1), 1-23 (1992) · Zbl 0756.35081 · doi:10.1007/BF02099526
[19] Kreimer D.: Anatomy of a gauge theory. Ann. Phys. 321(12), 2757-2781 (2006) · Zbl 1107.81038 · doi:10.1016/j.aop.2006.01.004
[20] Krüger, O., Kreimer, D.: Filtrations in Dyson-Schwinger equations: next-to j-leading log expansions systematically. Ann. Phys. (2015) · Zbl 1360.81244
[21] Lando, S.K., Zvonkin, A.K.: Graphs on Surfaces and their Applications, vol. 141. Springer Science & Business Media, Berlin (2013) · Zbl 0792.05005
[22] Lautrup B.: On high order estimates in QED. Phys. Lett. B 69(1), 109-111 (1977) · doi:10.1016/0370-2693(77)90145-9
[23] Manchon, D.: Hopf algebras, from basics to applications to renormalization (2004). arXiv:math/0408405 [hep-th]
[24] Schmitt W.R.: Incidence Hopf algebras. J. Pure Appl. Algebra 96(3), 299-330 (1994) · Zbl 0808.05101 · doi:10.1016/0022-4049(94)90105-8
[25] Stanley, RP.: Enumerative combinatorics. In: Cambridge Studies in Advanced Mathematics, vol. 49. Cambridge University Press, Cambridge (1997) · Zbl 0889.05001
[26] Stern, M.: Semimodular lattices: theory and applications. In: Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge (1999) · Zbl 0957.06008
[27] Weinberg S.: High-energy behavior in quantum field theory. Phys. Rev. 118, 838-849 (1960) · Zbl 0098.20403 · doi:10.1103/PhysRev.118.838
[28] Yeats, K.: Growth estimates for Dyson-Schwinger equations. PhD thesis, Boston University (2008) · Zbl 0098.20403
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.