×

The effective theory of strings. (English) Zbl 1292.81107

The starting point of string theory was a model described by the Nambu-Goto action. Even though this action has a physical interpretation as the area of the string world sheet, its quantization turned out to be awkward in the past. As it turned out later, the bosonic strings in a given ambient target space can be consistently quantized when its dimension is 26. The present article shows that the Nambu-Goto string can be quantized in any dimension of the target space as an effective theory, although there have been indications in the past that there exist quantization schemes which do not require the dimension of the ambient space to be fixed. Here the authors use tools from perturbative algebraic QFT, also tools from curved space-time and the Batalin-Vilkovisky formalism. Whether there is a correspondence between the Lüscher-Weisz string theory and the present model remains an open question. The present model may also be related to the effective string theory of Polchinski and Strominger, but in the present approach, in contrast to Pohlmeyer’s approach, the observables are compactly supported and local.

MSC:

81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
83E30 String and superstring theories in gravitational theory
81T70 Quantization in field theory; cohomological methods

References:

[1] Green, M.B., Schwarz, J.H. Witten, E.: Superstring theory, Vol. 1, Cambridge: Cambridge University Press, 1987 · Zbl 0619.53002
[2] Rebbi C.: Dual models and relativistic quantum strings. Phys. Rept. 12, 1-73 (1974) · doi:10.1016/0370-1573(74)90031-3
[3] Pohlmeyer K.: A group theoretical approach to the quantization of the free relativistic closed string. Phys. Lett. B119, 100 (1982) · doi:10.1016/0370-2693(82)90254-4
[4] Thiemann T.: The LQG string: Loop quantum gravity quantization of string theory I: Flat target space. Class. Quant. Grav. 23, 1923-1970 (2006) · Zbl 1091.83015 · doi:10.1088/0264-9381/23/6/007
[5] Meusburger C., Rehren K.-H.: Algebraic quantization of the closed bosonic string. Commun. Math. Phys. 237, 69-85 (2003) · Zbl 1033.81070
[6] Brandt F., Troost W., van Proeyen A.: The BRST-antibracket cohomology of 2-d gravity conformally coupled to scalar matter. Nucl. Phys. B 464, 353-408 (1996) · Zbl 1004.81565 · doi:10.1016/0550-3213(96)00030-2
[7] Gomis J., Paris J., Samuel S.: Antibracket, antifields and gauge theory quantization. Phys. Rept. 259, 1-145 (1995) · doi:10.1016/0370-1573(94)00112-G
[8] Grundling H., Hurst C.A.: The operator quantization of the open bosonic string: field algebra. Commun. Math. Phys. 156, 473-525 (1993) · Zbl 0790.46057 · doi:10.1007/BF02096861
[9] Dimock J.: Locality in free string field theory-II. Annales Henri Poincaré 3, 613-634 (2002) · Zbl 1025.81041 · doi:10.1007/s00023-002-8628-3
[10] Brink, L., Henneaux, M.: Principles of String Theory. New York: Plenum Press, 1988 · Zbl 1201.81090
[11] Brunetti R., Fredenhagen K., Verch R.: The generally covariant locality principle: A New paradigm for local quantum field theory. Commun. Math. Phys. 237, 31-68 (2003) · Zbl 1047.81052
[12] Hollands S., Wald R.M.: Existence of local covariant time ordered products of quantum fields in curved space-time. Commun. Math. Phys. 231, 309-345 (2002) · Zbl 1015.81043 · doi:10.1007/s00220-002-0719-y
[13] Barnich G., Brandt F., Henneaux M.: Local BRST cohomology in gauge theories. Phys. Rept. 338, 439-569 (2000) · Zbl 1097.81571 · doi:10.1016/S0370-1573(00)00049-1
[14] Fredenhagen K., Rejzner K.: Batalin-Vilkovisky formalism in perturbative algebraic quantum field theory. Commun. Math. Phys. 317, 697-725 (2013) · Zbl 1263.81245 · doi:10.1007/s00220-012-1601-1
[15] Lüscher, M., Weisz, P.: Quark confinement and the bosonicstring. JHEP 0207, 049 (2002) · Zbl 1108.35118
[16] Henneaux, M., Teitelboim, C.: Quantization of Gauge Systems. Princeton: Princeton University Press, 1992 · Zbl 0838.53053
[17] Aharony O., Dodelson M.: Effective string theory and nonlinear Lorentz invariance. JHEP 1202, 008 (2012) · Zbl 1309.81190 · doi:10.1007/JHEP02(2012)008
[18] Dubovsky S., Flauger R., Gorbenko V.: Effective string theory revisited. JHEP 1209, 044 (2012) · Zbl 1397.83140 · doi:10.1007/JHEP09(2012)044
[19] Polchinski J., Strominger A.: Effective string theory. Phys. Rev. Lett. 67, 1681-1684 (1991) · Zbl 0990.81715 · doi:10.1103/PhysRevLett.67.1681
[20] Mund J., Schroer B., Yngvason J.: String localized quantum fields from Wigner representations. Phys. Lett. B596, 156-162 (2004) · Zbl 1247.81399 · doi:10.1016/j.physletb.2004.06.091
[21] Brunetti, R., Fredenhagen, K.: Towards a background independent formulation of perturbative quantum gravity. In: Fauser, B., Tolksdorf, J., Zeidler, E. (eds.) Quantum Gravity: Mathematical Models and Experimental Bounds, Boston: Birkhäuser, 2007, p. 151 · Zbl 1120.83016
[22] Hollands S., Wald R.M.: Conservation of the stress tensor in interacting quantum field theory in curved spacetimes. Rev. Math. Phys. 17, 227-312 (2005) · Zbl 1078.81062 · doi:10.1142/S0129055X05002340
[23] Wald, R.M. General Relativity, Chicago: University of Chicago Press, 1984 · Zbl 0549.53001
[24] Eggers J., Hoppe J.: Singularity formation for time-like extremal hypersurfaces. Phys. Lett. B680, 274-278 (2009) · doi:10.1016/j.physletb.2009.09.005
[25] Müller O.: The Cauchy problem of Lorentzian minimal surfaces in globally hyperbolic manifolds. Ann. Global Anal. Geom. 32(1), 67-85 (2007) · Zbl 1152.81036 · doi:10.1007/s10455-006-9053-5
[26] Allen P., Andersson L., Isenberg J.: Timelike minimal submanifolds of general co-dimension in Minkowski space time. J. Hyperbolic Differ. Equ. 3(4), 691-700 (2006) · Zbl 1108.35118 · doi:10.1142/S0219891606000963
[27] Fredenhagen K., Rejzner K.: Batalin-Vilkovisky formalism in the functional approach to classical field theory. Commun. Math. Phys. 314, 93-127 (2012) · Zbl 1418.70034 · doi:10.1007/s00220-012-1487-y
[28] Brunetti R., Fredenhagen K.: Microlocal analysis and interacting quantum field theories: renormalization on physical backgrounds. Commun. Math. Phys. 208, 623-661 (2000) · Zbl 1040.81067 · doi:10.1007/s002200050004
[29] Brunetti R., Dütsch M., Fredenhagen K.: Perturbative algebraic quantum field theory and the renormalization groups. Adv. Theor. Math. Phys. 13(5), 1541-1599 (2009) · Zbl 1201.81090 · doi:10.4310/ATMP.2009.v13.n5.a7
[30] Kriegl, A., Michor, P.W.: The Convenient Setting of Global Analysis. Providence: American Mathematical Society, 1997 · Zbl 0889.58001
[31] Lang, S.: Differential and Riemannian Manifolds, Berlin: Springer, 1995 · Zbl 0824.58003
[32] Bär, C., Ginoux, N., Pfäffle, F.: Wave equations on Lorentzian manifolds and quantization, Billingsley: European Mathematical Society, 2007 · Zbl 1118.58016
[33] Kleinert H.: The membrane properties of condensing strings. Phys. Lett. B 174, 335-338 (1986) · doi:10.1016/0370-2693(86)91111-1
[34] Bogoliubov, N., Shirkov, D.: Introduction to the Theory of Quantized Fields. New York: Interscience Publishers, Inc., 1959 · Zbl 0088.21701
[35] Hollands S.: Renormalized quantum Yang-Mills fields in curved spacetime. Rev. Math. Phys. 20, 1033-1172 (2008) · Zbl 1161.81022 · doi:10.1142/S0129055X08003420
[36] Rejzner, K.: Batalin-Vilkovisky formalism in locally covariant field theory Ph.D. thesis, Hamburg University, 2011 · Zbl 0990.81715
[37] Kontsevich M.: Deformation quantization of Poisson manifolds, I. Lett. Math. Phys. 66, 157-216 (2003) · Zbl 1058.53065 · doi:10.1023/B:MATH.0000027508.00421.bf
[38] Hollands S., Wald R.M.: Local Wick polynomials and time ordered products of quantum fields in curved space-time. Commun. Math. Phys. 223, 289-326 (2001) · Zbl 0989.81081 · doi:10.1007/s002200100540
[39] Fulling S., Narcowich F., Wald R.M.: Singularity structure of the two point function in quantum field theory in curved space-time II.. Annals Phys. 136, 243-272 (1981) · Zbl 0495.35054 · doi:10.1016/0003-4916(81)90098-1
[40] Dütsch M., Fredenhagen K.: Causal perturbation theory in terms of retarded products, and a proof of the action Ward identity. Rev. Math. Phys. 16, 1291-1348 (2004) · Zbl 1084.81054 · doi:10.1142/S0129055X04002266
[41] Brennecke F., Dütsch M.: Removal of violations of the Master Ward Identity in perturbative QFT. Rev. Math. Phys. 20, 119-172 (2008) · Zbl 1149.81017 · doi:10.1142/S0129055X08003237
[42] Guichardet, A.: Cohomologie des groupes topologiques et des algèbres de Lie, Vol. 2 of Textes Mathématiques [Mathematical Texts], CEDIC, Paris (1980) · Zbl 0464.22001
[43] Piguet, O., Sorella, S.P.:Algebraic Renormalization. In: Lecture Notes in Physics, Vol. 28, Berlin: Springer, 1995 · Zbl 0845.58069
[44] Brandt F., Dragon N., Kreuzer M.: All consistent Yang-Mills anomalies. Phys. Lett. B 231, 263-270 (1989) · doi:10.1016/0370-2693(89)90211-6
[45] Polyakov A.M.: Fine structure of strings. Nucl. Phys. B 268, 406-412 (1986) · doi:10.1016/0550-3213(86)90162-8
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.