×

Transformations for a generalized variable-coefficient Korteweg-de Vries model from blood vessels, Bose-Einstein condensates, rods and positons with symbolic computation. (English) Zbl 1160.37401

Summary: The variable-coefficient Korteweg-de Vries (KdV)-typed models, although often hard to be studied, are of current interest in describing various real situations. Under investigation hereby is a large class of the generalized variable-coefficient KdV models with external-force and perturbed/dissipative terms. Recent examples of this class include those in blood vessels and circulatory system, arterial dynamics, trapped Bose-Einstein condensates related to matter waves and nonlinear atom optics, Bose gas of impenetrable bosons with longitudinal confinement, rods of compressible hyperelastic material and semiconductor heterostructures with positonic phenomena. In this Letter, based on symbolic computation, four transformations are proposed from this class either to the cylindrical or standard KdV equation when the respective constraint holds. The constraints have nothing to do with the external-force term. Under those transformations, such analytic solutions as those with the Airy, Hermit and Jacobian elliptic functions can be obtained, including the solitonic profiles. The roles for the perturbed and external-force terms to play are observed and discussed. Investigations on this class can be performed through the properties of solutions of cylindrical and standard KdV equations.

MSC:

37K10 Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.)
92C35 Physiological flow
82D99 Applications of statistical mechanics to specific types of physical systems
68W30 Symbolic computation and algebraic computation
Full Text: DOI

References:

[1] Holloway, P.; Pelinovsky, E.; Talipova, T., J. Geophys. Res. C, 104, 18333 (1999)
[2] Coffey, M., Phys. Rev. B, 54, 1279 (1996)
[3] Tian, B.; Gao, Y. T., Phys. Plasmas (Lett.), 12, 070703 (2005)
[4] Tian, B.; Gao, Y. T., Phys. Lett. A, 342, 228 (2005) · Zbl 1222.78043
[5] Tian, B.; Gao, Y. T., Comput. Math. Appl., 45, 731 (2003) · Zbl 1041.68134
[6] Tian, B.; Shan, W. R.; Zhang, C. Y.; Wei, G. M.; Gao, Y. T., Eur. Phys. J. B (Rapid Note), 47, 329 (2005)
[7] Li, X. C.; Cai, S. L.; Xu, B., Advanced Mathematics (1999), Higher Edu. Press: Higher Edu. Press Beijing
[8] Zamir, M., The Physics of Pulsatile Flow (2000), Springer-Verlag: Springer-Verlag New York · Zbl 0978.76005
[9] Cascaval, R. C., (Goldstein, G. R.; Nagel, R.; Romanelli, S., Evolution Equations. Evolution Equations, Lecture Notes on Pure and Applied Mathematics, vol. 234 (2003), Marcel Dekker)
[10] Bakirtas, I.; Demiray, H., Int. J. Non-Linear Mech., 40, 785 (2005) · Zbl 1349.74109
[11] Demiray, H., Int. J. Eng. Sci., 42, 203 (2004) · Zbl 1211.76162
[12] Leggett, A. J., Rev. Mod. Phys., 73, 307 (2001)
[13] Dutton, Z.; Budde, M.; Slowe, C.; Hau, L. V., Science, 293, 663 (2001)
[14] Huang, G. X.; Szeftel, J.; Zhu, S. H., Phys. Rev. A, 65, 053605 (2002)
[15] Johnson, R. S., Proc. Cambridge Philos. Soc., 73, 183 (1973) · Zbl 0255.76020
[16] Frantzeskakis, D. J.; Proukakis, N. P.; Kevrekidis, P. G., Phys. Rev. A, 70, 015601 (2004)
[17] Samsonov, A. M.; Dreiden, G. V.; Proubov, A. V.; Semenova, I. V., Phys. Rev. B, 57, 5778 (1998)
[18] Dai, H. H.; Huo, Y., Wave Motion, 35, 55 (2002) · Zbl 1120.76304
[19] Capasso, F.; Sirtori, C.; Faist, J.; Sivco, D. L.; Cho, S. N.G., Nature, 358, 565 (1992)
[20] Xie, Y. C., Chaos Solitons Fractals, 20, 337 (2004) · Zbl 1046.35102
[21] Gao, Y. T.; Tian, B., Int. J. Mod. Phys. C, 12, 1431 (2001)
[22] Hong, H.; Lee, J., Phys. Plasmas, 6, 3422 (1999)
[23] Tian, B.; Gao, Y. T., Eur. Phys. J. B, 22, 351 (2001)
[24] El, G. A.; Grimshaw, R. H.J., Chaos, 12, 1015 (2002) · Zbl 1080.76506
[25] Gao, Y. T.; Tian, B., Phys. Lett. A, 349, 314 (2006)
[26] Tian, B.; Gao, Y. T., Phys. Lett. A, 340, 449 (2005) · Zbl 1145.35452
[27] Tian, B.; Gao, Y. T., Phys. Plasmas, 12, 054701 (2005)
[28] Korteweg, D. J.; de Vries, G., Philos. Mag., 39, 422 (1895) · JFM 26.0881.02
[29] Ludu, A.; Draayer, J., Phys. Rev. Lett., 80, 2125 (1998)
[30] Reatto, L.; Galli, D., Int. J. Mod. Phys. B, 13, 607 (1999)
[31] Chudnovsky, D.; Chudnovsky, G., Proc. Nat. Acad. Sci. USA, 96, 2263 (1999)
[32] Horii, Z., Physica A, 337, 398 (2004)
[33] Zhang, L. P.; Xue, J. K., Chaos Solitons Fractals, 23, 543 (2005) · Zbl 1135.76599
[34] Hong, W. P.; Kim, J. J., Z. Naturforsch. A, 60, 557 (2005)
[35] Hirota, R., Phys. Lett. A, 71, 393 (1979)
[36] Abellanas, L.; Galindo, A., Phys. Lett. A, 108, 123 (1985)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.